Lorentz invariant distributions supported on the forward light cone
Compositio Mathematica, Tome 81 (1992) no. 1, pp. 61-106.
@article{CM_1992__81_1_61_0,
     author = {Kolk, Johan A. C. and Varadarajan, V. S.},
     title = {Lorentz invariant distributions supported on the forward light cone},
     journal = {Compositio Mathematica},
     pages = {61--106},
     publisher = {Kluwer Academic Publishers},
     volume = {81},
     number = {1},
     year = {1992},
     mrnumber = {1145608},
     zbl = {0772.46017},
     language = {en},
     url = {http://www.numdam.org/item/CM_1992__81_1_61_0/}
}
TY  - JOUR
AU  - Kolk, Johan A. C.
AU  - Varadarajan, V. S.
TI  - Lorentz invariant distributions supported on the forward light cone
JO  - Compositio Mathematica
PY  - 1992
SP  - 61
EP  - 106
VL  - 81
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1992__81_1_61_0/
LA  - en
ID  - CM_1992__81_1_61_0
ER  - 
%0 Journal Article
%A Kolk, Johan A. C.
%A Varadarajan, V. S.
%T Lorentz invariant distributions supported on the forward light cone
%J Compositio Mathematica
%D 1992
%P 61-106
%V 81
%N 1
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1992__81_1_61_0/
%G en
%F CM_1992__81_1_61_0
Kolk, Johan A. C.; Varadarajan, V. S. Lorentz invariant distributions supported on the forward light cone. Compositio Mathematica, Tome 81 (1992) no. 1, pp. 61-106. http://www.numdam.org/item/CM_1992__81_1_61_0/

[1] I.N. Bernstein, I.M. Gelfand, and S.I. Gelfand: Structure of representations generated by vectors of highest weight, Funkcional Anal. i Priložen 5(1) (1971), 1-9; I.M. Gelfand: Collected Papers, Vol. II, Springer-Verlag, Berlin etc., 1988, pp. 556-563. | MR | Zbl

[2] G. Cassinelli, P. Truini, and V.S. Varadarajan: Hilbert space representations of the Poincaré group for the Landau gauge, J. Math. Phys. 32(4) (1991), 1076-1090. | MR | Zbl

[3] L. Gårding and J.L. Lions: Functional analysis, Supplemento al Nuovo Cimento 14(10) (1959), 9-66. | MR | Zbl

[4] I.M. Gelfand and G.E. Shilov: Generalized Functions, Vol. 1, Academic Press Inc., New York, London, 1964. | Zbl

[5] Harish-Chandra: Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87-120. | MR | Zbl

[6] Harish-Chandra: Invariant distributions on Lie algebras, Amer. J. Math. 86 (1964), 271-309. | MR | Zbl

[7] L. Hörmander: The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin etc., 1983. | Zbl

[8] J.A.C. Kolk and V.S. Varadarajan: Riesz distributions, to appear in Math. Scand. | MR | Zbl

[9] B. Kostant: Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404. | MR | Zbl

[10] P.-D. Methée: Sur les distributions invariantes dans le groupe des rotations de Lorentz, Comment. Math. Helv. 28 (1954), 225-269. | MR | Zbl

[11] S. Rallis and G. Schiffmann: Distributions invariantes par le groupe orthogonal, in Analyse Harmonique sur les Groupes de Lie. Séminaire Nancy- Strasbourg 1973-75, Lecture Notes in Math. 497, Springer-Verlag, Berlin etc., 1975, pp. 494-642. | Zbl

[12] G. De Rham: Sur la division de formes et de courants par une forme linéaire, Comment. Math. Helv. 28 (1954), 346-352. | MR | Zbl

[13] G. De Rham: Solution élémentaire d'opérateurs différentiels du second ordre, Ann. Inst. Fourier (Grenoble) 8 (1958), 337-366. | Numdam | MR | Zbl

[14] M. Riesz: L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math. 81 (1949), 1-223; Collected Papers, Springer-Verlag, Berlin etc., 1988, pp. 571-793. | MR | Zbl

[15] O. Tedone: Sull' integrazione dell' equazione ∂2Φ/∂t2-Σm 1∂2Φ/∂x2i=0, Annali di Math. 1(1) (1898), 1-24. | JFM

[16] A. Tengstrand: Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand. 8 (1960), 201-218. | MR | Zbl

[17] V.S. Varadarajan: Harmonic analysis on real reductive groups, Lecture Notes in Math. 576, Springer-Verlag, Berlin etc., 1977. | MR | Zbl

[18] V.S. Varadarajan: Infinitesimal theory of representations of semisimple Lie groups, in J.A. Wolf, M. Cahen and M. De Wilde (eds.), Harmonic Analysis and Representations of Semisimple Lie Groups, D. Reidel Publishing Company, Dordrecht etc., 1980, pp. 131-255. | Zbl