@article{CM_1991__80_2_137_0, author = {Nishiyama, Kyo}, title = {Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $}, journal = {Compositio Mathematica}, pages = {137--149}, publisher = {Kluwer Academic Publishers}, volume = {80}, number = {2}, year = {1991}, mrnumber = {1132090}, zbl = {0741.17002}, language = {en}, url = {http://www.numdam.org/item/CM_1991__80_2_137_0/} }
TY - JOUR AU - Nishiyama, Kyo TI - Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $ JO - Compositio Mathematica PY - 1991 SP - 137 EP - 149 VL - 80 IS - 2 PB - Kluwer Academic Publishers UR - http://www.numdam.org/item/CM_1991__80_2_137_0/ LA - en ID - CM_1991__80_2_137_0 ER -
%0 Journal Article %A Nishiyama, Kyo %T Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $ %J Compositio Mathematica %D 1991 %P 137-149 %V 80 %N 2 %I Kluwer Academic Publishers %U http://www.numdam.org/item/CM_1991__80_2_137_0/ %G en %F CM_1991__80_2_137_0
Nishiyama, Kyo. Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $. Compositio Mathematica, Tome 80 (1991) no. 2, pp. 137-149. http://www.numdam.org/item/CM_1991__80_2_137_0/
[1] Representation theory of superconformal quantum mechanics. J. Math. Phys., 29:1163-1170, 1988. | MR | Zbl
, , and[2] Algèbre, Chap. 9. Hermann, 1959. | Zbl
[3] Theory of Lie groups I. Princeton Univ. Press, 1946. | MR | Zbl
[4] Graded Lie algebras in mathematics and physics (bose-Fermi symmetry). Reviews of Modern Phys., 47:573-603, 1975. | MR | Zbl
, , and[5] C. Fronsdal, editor. Essays on Supersymmetry. Reidel, 1986. | MR
[6] Representations of Lie super algebras, I. Extensions of representations of the even part. J. Math. Kyoto Univ., 28:695-749, 1988. | MR | Zbl
and[7] On the role of Heisenberg group in harmonic analysis. Bull. AMS, 3:821-843, 1980. | MR | Zbl
[8] Remarks on classical invariant theory. Trans. AMS, 313:539-570, 1989. | MR | Zbl
[9] On the Segal-Shale-Weil representations and harmonic polynomials. Inv. Math., 44:1-47, 1978. | MR | Zbl
and[10] Oscillator representations for orthosymplectic algebras. J. Alg., 129:231-262, 1990. | MR | Zbl
[11] Super dual pairs and unitary highest weight modules of orthosymplectic algebras. To appear in Adv. in Math. | Zbl
[12] Dirac operator and the discrete series. Ann. Math., 96:1-30, 1972. | MR | Zbl
[13] Dual resonance theory. Phys. Rep., 8C:269-335, 1973.
[14] Hermitian Lie algebras and metaplectic representations. I. Trans. AMS, 238:1-43, 1978. | MR | Zbl
and[15] Graded generalizations of Weyl- and Clifford algebras. J. Pure and Appl. Alg., 10:163-168, 1977. | MR | Zbl
[16] Sur certain groupes d'operateurs unitairs. Acta Math., 111:143-211, 1964. | MR | Zbl