Topologically -determined map germs are topologically cone-like
Compositio Mathematica, Tome 64 (1987) no. 1, pp. 117-129.
@article{CM_1987__64_1_117_0,
     author = {Nishimura, Takashi},
     title = {Topologically $\infty $-determined map germs are topologically cone-like},
     journal = {Compositio Mathematica},
     pages = {117--129},
     publisher = {Martinus Nijhoff Publishers},
     volume = {64},
     number = {1},
     year = {1987},
     zbl = {0647.58013},
     language = {en},
     url = {http://www.numdam.org/item/CM_1987__64_1_117_0/}
}
TY  - JOUR
AU  - Nishimura, Takashi
TI  - Topologically $\infty $-determined map germs are topologically cone-like
JO  - Compositio Mathematica
PY  - 1987
SP  - 117
EP  - 129
VL  - 64
IS  - 1
PB  - Martinus Nijhoff Publishers
UR  - http://www.numdam.org/item/CM_1987__64_1_117_0/
LA  - en
ID  - CM_1987__64_1_117_0
ER  - 
%0 Journal Article
%A Nishimura, Takashi
%T Topologically $\infty $-determined map germs are topologically cone-like
%J Compositio Mathematica
%D 1987
%P 117-129
%V 64
%N 1
%I Martinus Nijhoff Publishers
%U http://www.numdam.org/item/CM_1987__64_1_117_0/
%G en
%F CM_1987__64_1_117_0
Nishimura, Takashi. Topologically $\infty $-determined map germs are topologically cone-like. Compositio Mathematica, Tome 64 (1987) no. 1, pp. 117-129. http://www.numdam.org/item/CM_1987__64_1_117_0/

1 T. Fukuda, Types topologiques des polynomes, Publ. Math. I.H.E.S. 46 (1976) 87-106. | Numdam | MR | Zbl

2 T. Fukuda, Local topological properties of differentiable mappings. I, Invent. Math. 65 (1981) 227-250; II, Tokyo Journal of Math. 8 (1985) 501-520. | MR | Zbl

3 C.G. Gibson et al., Topological stabilities of smooth mapping, Springer Lecture Notes in Math. 552 (1976) 128-176.

4 Le Dung Tráng and B. Teissier, Report on the problem session, Singularities. Proceedings of Symposia in Pure Math. 40, part 2 (1983) 105-115. | MR | Zbl

5 J. Mather, How to stratify mappings and jet spaces, Springer Lecture Notes in Math. 535 (1976) 128-176. | MR | Zbl

6 J. Mather, Stability of C∞ mappings I, Annals of Math. 87 (1968) 89-104; II, Annals of Math. 89 (1969) 254-291; III, Publ. Math. I.H.E.S. 35 (1969) 127-156; IV, Publ. Math. I.H.E.S. 37 (1970) 223-248; V, Advances in Math. 4 (1970) 301-335; VI, Springer Lecture Notes in Math. 192 (1971) 207-253.

7 R. Thom, Local topological properties of differentiable mappings, In: Colloquium on Differential Analysis, Oxford University Press (1964) pp. 191-202. | MR | Zbl

8 L.C. Wilson, Infinitely determined mapgerms, Canadian Journal of Math. 33 (1981) 671-684. | MR | Zbl