Convex polytopes as matrix invariants
Compositio Mathematica, Tome 52 (1984) no. 2, pp. 203-210.
@article{CM_1984__52_2_203_0,
     author = {Sierksma, Gerard and de Vos, Klaas},
     title = {Convex polytopes as matrix invariants},
     journal = {Compositio Mathematica},
     pages = {203--210},
     publisher = {Martinus Nijhoff Publishers},
     volume = {52},
     number = {2},
     year = {1984},
     mrnumber = {750356},
     zbl = {0545.52005},
     language = {en},
     url = {http://www.numdam.org/item/CM_1984__52_2_203_0/}
}
TY  - JOUR
AU  - Sierksma, Gerard
AU  - de Vos, Klaas
TI  - Convex polytopes as matrix invariants
JO  - Compositio Mathematica
PY  - 1984
SP  - 203
EP  - 210
VL  - 52
IS  - 2
PB  - Martinus Nijhoff Publishers
UR  - http://www.numdam.org/item/CM_1984__52_2_203_0/
LA  - en
ID  - CM_1984__52_2_203_0
ER  - 
%0 Journal Article
%A Sierksma, Gerard
%A de Vos, Klaas
%T Convex polytopes as matrix invariants
%J Compositio Mathematica
%D 1984
%P 203-210
%V 52
%N 2
%I Martinus Nijhoff Publishers
%U http://www.numdam.org/item/CM_1984__52_2_203_0/
%G en
%F CM_1984__52_2_203_0
Sierksma, Gerard; de Vos, Klaas. Convex polytopes as matrix invariants. Compositio Mathematica, Tome 52 (1984) no. 2, pp. 203-210. http://www.numdam.org/item/CM_1984__52_2_203_0/

[1] R.M. Adin, Extreme positive operators on minimal and almost-minimal cones. Linear Algebra Appl. 44 (1982) 61-86. | MR | Zbl

[2] A. Berman and R.J. Plemmons: Non -negative Matrices in the Mathematical Sciences. Academic (1979). | Zbl

[3] L. Elsner: On matrices leaving invariant a nontrivial convex set. Linear Algebra Appl. 42 (1982) 103-107. | MR | Zbl

[4] H.G. Eggleston: Convexity. Cambridge Univ. Press (1958). | MR | Zbl

[5] R. Loewy and H. Schneider: Indecomposable cones. Linear Algebra Appl. 11 (1975) 235-245. | MR | Zbl

[6] G. Sierksma: Axiomatic Convexity Theory. Doct. Diss., Univ. Groningen (1976).

[7] G. Sierksma: Non-negative matrices; the open Leontief model. Linear Algebra Appl. 26 (1979) 175-201. | Zbl

[8] B.-S. Tam: Some aspects of Finite Dimensional Cones. Doct. Diss., Univ. Hongkong (1977).

[9] F.A. Valentine: Convex Sets New York: McGraw-Hill (1964). | MR | Zbl