@article{CM_1974__29_2_179_0, author = {Figiel, T. and Johnson, W. B.}, title = {A uniformly convex {Banach} space which contains no $l_p$}, journal = {Compositio Mathematica}, pages = {179--190}, publisher = {Noordhoff International Publishing}, volume = {29}, number = {2}, year = {1974}, mrnumber = {355537}, zbl = {0301.46013}, language = {en}, url = {http://www.numdam.org/item/CM_1974__29_2_179_0/} }
TY - JOUR AU - Figiel, T. AU - Johnson, W. B. TI - A uniformly convex Banach space which contains no $l_p$ JO - Compositio Mathematica PY - 1974 SP - 179 EP - 190 VL - 29 IS - 2 PB - Noordhoff International Publishing UR - http://www.numdam.org/item/CM_1974__29_2_179_0/ LA - en ID - CM_1974__29_2_179_0 ER -
Figiel, T.; Johnson, W. B. A uniformly convex Banach space which contains no $l_p$. Compositio Mathematica, Tome 29 (1974) no. 2, pp. 179-190. http://www.numdam.org/item/CM_1974__29_2_179_0/
[1] Factoring weakly compact operators. J. Functional Anal. 17 (1974). | MR | Zbl
, , , and :[2] Some more uniformly convex spaces. Bull. Amer. Math. Soc. 47 (1941) 504-507. | JFM | MR | Zbl
:[3] On Banach spaces X for which π2(£∞, X) = B(£∞, X). Studia Math. 44 (1972) 617-648. | Zbl
, , and :[4] Banach spaces which can be given an equivalent uniformly convex norm. Israel J. Math. 13 (1972) 281-288. | MR | Zbl
:[5] Some results concerning LP(μ) spaces. J. Functional Anal. 14 (1973) 325-348. | Zbl
and :[6] An example of an infinite dimensional Banach space non-isomorphic to its Cartesian square. Studia Math. 42 (1972) 295-306. | MR | Zbl
:[7] Uniformly non-square Banach spaces. Ann. of Math. 80 (1964) 542-550. | MR | Zbl
:[8] On finite dimensional subspaces of Banach spaces with local unconditional structure. Studia Math. 51 (1974). | MR | Zbl
:[9] Théorémes de factorisation pour les opérateurs linéaires á valeurs dans les espaces Lp. Société Mathématique de France (1974). | Numdam | MR | Zbl
:[10] On subspaces of Lp. Ann. of Math. 97 (1973) 344-373. | MR | Zbl
:[11] Not every Banach space contains lp or c0.
: