[Systèmes minimaux et ensembles distributionnellement brouillés]
In this paper we investigate numerous constructions of minimal systems from the point of view of
Keywords: chaotic pair, scrambled set, Mycielski set, distributional chaos, Li-Yorke chaos, filter
Mot clés : paire chaotique, ensemble ***, ensemble de Mycielski, chaos distributionnel, chaos de Li-Yorke, filtre
@article{BSMF_2012__140_3_401_0, author = {Oprocha, Piotr}, title = {Minimal systems and distributionally scrambled sets}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {401--439}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {140}, number = {3}, year = {2012}, doi = {10.24033/bsmf.2631}, zbl = {1278.37013}, language = {en}, url = {https://www.numdam.org/articles/10.24033/bsmf.2631/} }
TY - JOUR AU - Oprocha, Piotr TI - Minimal systems and distributionally scrambled sets JO - Bulletin de la Société Mathématique de France PY - 2012 SP - 401 EP - 439 VL - 140 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2631/ DO - 10.24033/bsmf.2631 LA - en ID - BSMF_2012__140_3_401_0 ER -
%0 Journal Article %A Oprocha, Piotr %T Minimal systems and distributionally scrambled sets %J Bulletin de la Société Mathématique de France %D 2012 %P 401-439 %V 140 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2631/ %R 10.24033/bsmf.2631 %G en %F BSMF_2012__140_3_401_0
Oprocha, Piotr. Minimal systems and distributionally scrambled sets. Bulletin de la Société Mathématique de France, Tome 140 (2012) no. 3, pp. 401-439. doi : 10.24033/bsmf.2631. https://www.numdam.org/articles/10.24033/bsmf.2631/
[1] « Topological entropy », Trans. Amer. Math. Soc. 114 (1965), p. 309-319. | MR | Zbl
, & -[2] « Lectures on Cantor and Mycielski sets for dynamical systems », in Chapel Hill Ergodic Theory Workshops, Contemp. Math., vol. 356, Amer. Math. Soc., 2004, p. 21-79. | MR | Zbl
-[3] « Generalized specification property and distributional chaos », Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), p. 1683-1694, Dynamical systems and functional equations (Murcia, 2000). | MR | Zbl
, , & -[4] « Strong distributional chaos and minimal sets », Topology Appl. 156 (2009), p. 1673-1678. | MR | Zbl
& -[5] « The three versions of distributional chaos », Chaos Solitons Fractals 23 (2005), p. 1581-1583. | MR | Zbl
, & -[6] « Regular periodic decompositions for topologically transitive maps », Ergodic Theory Dynam. Systems 17 (1997), p. 505-529. | MR | Zbl
-[7] « Asymptotic pairs in positive-entropy systems », Ergodic Theory Dynam. Systems 22 (2002), p. 671-686. | MR | Zbl
, & -[8] « Minimal self-joinings and positive topological entropy. II », Studia Math. 128 (1998), p. 121-133. | MR | Zbl
& -[9] « Survey of odometers and Toeplitz flows », in Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., 2005, p. 7-37. | MR | Zbl
-[10] « Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation », Math. Systems Theory 1 (1967), p. 1-49. | MR | Zbl
-[11] -, Recurrence in ergodic theory and combinatorial number theory, Princeton Univ. Press, 1981. | MR | Zbl
[12] « Constructions of strictly ergodic systems. I. Given entropy », Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), p. 323-334. | MR | Zbl
-
[13] -, « Constructions of strictly ergodic systems. II.
[14] « Construction of strictly ergodic systems. III. Bernoulli systems », Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975/76), p. 215-217. | MR | Zbl
& -[15] « Invariant measures and uniform positive entropy property for inverse limits », Appl. Math. J. Chinese Univ. Ser. B 14 (1999), p. 265-272, A Chinese summary appears in Gaoxiao Yingyong Shuxue Xuebao Ser. A 14 (1999), no. 3, 367. | MR | Zbl
& -[16] « Devaney's chaos and 2-scattering imply Li-Yorke's chaos », Topology 117 (2002), p. 259-272. | MR | Zbl
& -[17] « Mixing via sequence entropy », in Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., 2005, p. 101-122. | MR | Zbl
, & -[18] « A local variational relation and applications », Israel J. Math. 151 (2006), p. 237-279. | MR | Zbl
& -
[19] « Independence in topological and
[20] Topological and symbolic dynamics, Cours Spécialisés, vol. 11, Soc. Math. France, 2003. | MR | Zbl
-[21] « Period three implies chaos », Amer. Math. Monthly 82 (1975), p. 985-992. | MR | Zbl
& -[22] « Almost periodicity and distributional chaos », in Foundations of computational mathematics (Hong Kong, 2000), World Sci. Publ., River Edge, NJ, 2002, p. 189-210. | MR | Zbl
& -[23] « Distributional chaos revisited », Trans. Amer. Math. Soc. 361 (2009), p. 4901-4925. | MR | Zbl
-[24] -, « Weak mixing and product recurrence », Ann. Inst. Fourier 60 (2010), p. 1233-1257. | Numdam | MR | Zbl
[25] « Specification property and distributional chaos almost everywhere », Proc. Amer. Math. Soc. 136 (2008), p. 3931-3940. | MR | Zbl
& -[26] « Distributional chaos via semiconjugacy », Nonlinearity 20 (2007), p. 2661-2679. | MR | Zbl
& -[27] « On some notions of chaos in dimension zero », Colloq. Math. 107 (2007), p. 167-177. | MR | Zbl
-[28] « Distributional (and other) chaos and its measurement », Real Anal. Exchange 26 (2000/01), p. 495-524. | MR | Zbl
, & -[29] « Measures of chaos and a spectral decomposition of dynamical systems on the interval », Trans. Amer. Math. Soc. 344 (1994), p. 737-754. | MR | Zbl
& -[30] « Distributional chaos on compact metric spaces via specification properties », J. Math. Anal. Appl. 241 (2000), p. 181-188. | MR | Zbl
& -[31] « Chaos via Furstenberg family couple », Topology Appl. 156 (2009), p. 525-532. | MR | Zbl
& -[32] « Toeplitz minimal flows which are not uniquely ergodic », Z. Wahrsch. Verw. Gebiete 67 (1984), p. 95-107. | MR | Zbl
-Cité par Sources :