[Le groupe de tresses
Nous montrons que le groupe de tresses à 4 brins
We prove that the braid group
Keywords: braid groups, property RD, CAT(0) spaces
Mot clés : groupes de tresses, propriété RD, espaces CAT(0)
@article{BSMF_2011__139_4_479_0, author = {Barr\'e, Sylvain and Pichot, Mika\"el}, title = {The 4-string braid group $B_4$ has property {RD} and exponential mesoscopic rank}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {479--502}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {139}, number = {4}, year = {2011}, doi = {10.24033/bsmf.2615}, mrnumber = {2869301}, zbl = {1266.20046}, language = {en}, url = {https://www.numdam.org/articles/10.24033/bsmf.2615/} }
TY - JOUR AU - Barré, Sylvain AU - Pichot, Mikaël TI - The 4-string braid group $B_4$ has property RD and exponential mesoscopic rank JO - Bulletin de la Société Mathématique de France PY - 2011 SP - 479 EP - 502 VL - 139 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2615/ DO - 10.24033/bsmf.2615 LA - en ID - BSMF_2011__139_4_479_0 ER -
%0 Journal Article %A Barré, Sylvain %A Pichot, Mikaël %T The 4-string braid group $B_4$ has property RD and exponential mesoscopic rank %J Bulletin de la Société Mathématique de France %D 2011 %P 479-502 %V 139 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2615/ %R 10.24033/bsmf.2615 %G en %F BSMF_2011__139_4_479_0
Barré, Sylvain; Pichot, Mikaël. The 4-string braid group $B_4$ has property RD and exponential mesoscopic rank. Bulletin de la Société Mathématique de France, Tome 139 (2011) no. 4, pp. 479-502. doi : 10.24033/bsmf.2615. https://www.numdam.org/articles/10.24033/bsmf.2615/
[1] « Rank rigidity of Euclidean polyhedra », Amer. J. Math. 122 (2000), p. 873-885. | MR | Zbl
& -[2] « Sur les immeubles triangulaires et leurs automorphismes », Geom. Dedicata 130 (2007), p. 71-91. | MR | Zbl
& -[3] -, « Friezes in polyhedral complexes and application », in preparation.
[4] -, « Intermediate rank and property RD », preprint arXiv:0710.1514.
[5] -, « Property RD for D. Wise non Hopfian group », preprint.
[6] « Centroids and the rapid decay property in mapping class groups », preprint arXiv:0810.1969. | MR | Zbl
& -[7] « Artin groups of finite type with three generators », Michigan Math. J. 47 (2000), p. 313-324. | MR | Zbl
-[8] « Three-generator Artin groups of large type are biautomatic », J. Pure Appl. Algebra 151 (2000), p. 1-9. | MR | Zbl
& -[9] Metric spaces of non-positive curvature, Grundl. Math. Wiss., vol. 319, Springer, 1999. | MR | Zbl
& -[10] « Artin-Gruppen und Coxeter-Gruppen », Invent. Math. 17 (1972), p. 245-271. | MR | Zbl
& -[11] Knots, second éd., de Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., 2003. | MR | Zbl
& -[12] « Artin groups of finite type are biautomatic », Math. Ann. 292 (1992), p. 671-683. | MR | Zbl
-[13] -, « Geodesic automation and growth functions for Artin groups of finite type », Math. Ann. 301 (1995), p. 307-324. | MR | Zbl
[14] -, « The Deligne complex for the four-strand braid group », Trans. Amer. Math. Soc. 356 (2004), p. 3881-3897. | MR | Zbl
[15] « Property (RD) for cocompact lattices in a finite product of rank one Lie groups with some rank two Lie groups », Geom. Dedicata 96 (2003), p. 161-177. | MR | Zbl
-[16] « Connected Lie groups and property RD », Duke Math. J. 137 (2007), p. 511-536. | MR | Zbl
, & -[17] « Some geometric groups with rapid decay », Geom. Funct. Anal. 15 (2005), p. 311-339. | MR | Zbl
& -[18] « Property of rapid decay. List of open problems from the 2006 workshop held at the AIM, Palo Alto, California », http://www.aimath.org/WWN/rapiddecay, 2006.
& -[19] « On the classification of CAT(0) structures for the 4-string braid group », Michigan Math. J. 53 (2005), p. 133-163. | MR | Zbl
& -[20] « Les immeubles des groupes de tresses généralisés », Invent. Math. 17 (1972), p. 273-302. | MR | Zbl
-[21] « The automorphism groups of the braid groups », Amer. J. Math. 103 (1981), p. 1151-1169. | MR | Zbl
& -[22] Word processing in groups, Jones and Bartlett Publishers, 1992. | MR | Zbl
, , , , & -[23] « The braid group and other groups », Quart. J. Math. Oxford Ser. 20 (1969), p. 235-254. | MR | Zbl
-[24] « Complete growth functions of hyperbolic groups », Invent. Math. 130 (1997), p. 159-188. | MR | Zbl
& -
[25] « An example of a nonnuclear
[26] « Groupes hyperboliques, algèbres d'opérateurs et un théorème de Jolissaint », C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), p. 771-774. | MR | Zbl
-
[27] « Rapidly decreasing functions in reduced
[28] « The braid group
[29] « A proof of property (RD) for cocompact lattices of
[30] -, «
[31] « Baum-Connes conjecture and group actions on trees »,
[32] « The automorphism group of the free group of rank two is a CAT(0) group », preprint arXiv:0809.2034. | MR | Zbl
, & -
[33] « A Haagerup inequality for
[34] Lectures on buildings, Perspectives in Mathematics, vol. 7, Academic Press Inc., 1989. | MR | Zbl
-[35] « Finite group extensions and the Baum-Connes conjecture », Geom. Topol. 11 (2007), p. 1767-1775. | MR | Zbl
-[36] Buildings of spherical type and finite BN-pairs, Lecture Notes in Math., vol. 386, Springer, 1974. | MR | Zbl
-[37] Introduction to the Baum-Connes conjecture, Lectures in Mathematics ETH Zürich, Birkhäuser, 2002. | MR | Zbl
-- Cubulation of some triangle-free Artin groups, Groups, Geometry, and Dynamics, Volume 16 (2022) no. 1, pp. 287-304 | DOI:10.4171/ggd/648 | Zbl:1514.20130
- Some spherical functions on hyperbolic groups, Journal of Topology and Analysis, Volume 13 (2021) no. 4, pp. 1125-1174 | DOI:10.1142/s1793525320500429 | Zbl:1547.20026
-
puzzles, Geometriae Dedicata, Volume 199 (2019), pp. 225-246 | DOI:10.1007/s10711-018-0346-1 | Zbl:1414.52013 - On the isomorphism types of Moebius-Kantor complexes, Journal of Geometry, Volume 110 (2019) no. 3, p. 17 (Id/No 51) | DOI:10.1007/s00022-019-0508-9 | Zbl:1444.57011
- Introduction to the rapid decay property, Around Langlands correspondences. International conference, Université Paris Sud, Orsay, France, June 17–20, 2015. Proceedings, Providence, RI: American Mathematical Society (AMS), 2017, pp. 53-72 | DOI:10.1090/conm/691/13893 | Zbl:1404.20032
- Harish-Chandra's Schwartz algebras associated with discrete subgroups of semisimple Lie groups, Journal of Lie Theory, Volume 27 (2017) no. 3, pp. 831-844 | Zbl:1404.22016
- The rapid decay property for Wise's non Hopfian group, Annales de l'Institut Fourier, Volume 65 (2015) no. 2, pp. 709-724 | DOI:10.5802/aif.2942 | Zbl:1372.20039
- Random groups and nonarchimedean lattices, Forum of Mathematics, Sigma, Volume 2 (2014), p. 39 (Id/No e26) | DOI:10.1017/fms.2014.23 | Zbl:1353.20023
- Removing chambers in Bruhat-Tits buildings, Israel Journal of Mathematics, Volume 202 (2014), pp. 117-160 | DOI:10.1007/s11856-014-1058-3 | Zbl:1323.51002
Cité par 9 documents. Sources : zbMATH