[Champs unitaires dans les sphères antipodalement trouées : grand indice entraîne grand volume]
Nous établissons une borne inférieure pour le volume d’un champ de vecteurs
We establish in this paper a lower bound for the volume of a unit vector field
Keywords: unit vector fields, volume, singularities, index
Mot clés : champs vectoriels unitaires, volume, singularités, indice
@article{BSMF_2008__136_1_147_0, author = {Brito, Fabiano G. B. and Chac\'on, Pablo M. and Johnson, David L.}, title = {Unit vector fields on antipodally punctured spheres: big index, big volume}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {147--157}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {136}, number = {1}, year = {2008}, doi = {10.24033/bsmf.2551}, mrnumber = {2415338}, zbl = {1158.53023}, language = {en}, url = {https://www.numdam.org/articles/10.24033/bsmf.2551/} }
TY - JOUR AU - Brito, Fabiano G. B. AU - Chacón, Pablo M. AU - Johnson, David L. TI - Unit vector fields on antipodally punctured spheres: big index, big volume JO - Bulletin de la Société Mathématique de France PY - 2008 SP - 147 EP - 157 VL - 136 IS - 1 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2551/ DO - 10.24033/bsmf.2551 LA - en ID - BSMF_2008__136_1_147_0 ER -
%0 Journal Article %A Brito, Fabiano G. B. %A Chacón, Pablo M. %A Johnson, David L. %T Unit vector fields on antipodally punctured spheres: big index, big volume %J Bulletin de la Société Mathématique de France %D 2008 %P 147-157 %V 136 %N 1 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2551/ %R 10.24033/bsmf.2551 %G en %F BSMF_2008__136_1_147_0
Brito, Fabiano G. B.; Chacón, Pablo M.; Johnson, David L. Unit vector fields on antipodally punctured spheres: big index, big volume. Bulletin de la Société Mathématique de France, Tome 136 (2008) no. 1, pp. 147-157. doi : 10.24033/bsmf.2551. https://www.numdam.org/articles/10.24033/bsmf.2551/
[1] « Area minimizing vector fields on round
[2] -, « A critical radius for unit Hopf vector fields on spheres », Math. Ann. 334 (2006), p. 731-751. | MR | Zbl
[3] « Total bending of flows with mean curvature correction », Differential Geom. Appl. 12 (2000), p. 157-163. | MR | Zbl
-[4] « A topological minorization for the volume of vector fields on 5-manifolds », Arch. Math. (Basel) 85 (2005), p. 283-292. | MR | Zbl
& -[5] « On the volume of unit vector fields on spaces of constant sectional curvature », Comment. Math. Helv. 79 (2004), p. 300-316. | MR | Zbl
, & -[6] « Sobre a energia e energia corrigida de campos unitários e distribuições. Volume de campos unitários », Thèse, Universidade de São Paulo, Brazil, 2000, and Universidad de Valencia, Spain, 2001.
-[7] « On the curvatura integra in a Riemannian manifold », Ann. of Math. (2) 46 (1945), p. 674-684. | MR | Zbl
-[8] « Characteristic forms and geometric invariants », Ann. of Math. (2) 99 (1974), p. 48-69. | MR | Zbl
& -[9] « Second variation of volume and energy of vector fields. Stability of Hopf vector fields », Math. Ann. 320 (2001), p. 531-545. | MR | Zbl
& -[10] « On the volume of a unit vector field on the three-sphere », Comment. Math. Helv. 61 (1986), p. 177-192. | MR | Zbl
& -[11] « Chern-Simons forms on associated bundles, and boundary terms », Geometria Dedicata 120 (2007), p. 23-24. | MR | Zbl
-[12] « Volumes of vector fields on spheres », Trans. Amer. Math. Soc. 336 (1993), p. 69-78. | MR | Zbl
-- Vector fields with big and small volume on the 2-sphere, Hiroshima Mathematical Journal, Volume 53 (2023) no. 2 | DOI:10.32917/h2022009
- Calibrations for the Volume of Unit Vector Fields in Dimension 2, Results in Mathematics, Volume 78 (2023) no. 3 | DOI:10.1007/s00025-023-01891-w
- Minimally Immersed Klein Bottles in the Unit Tangent Bundle of the Unit 2-Sphere Arising from Area-Minimizing Unit Vector Fields on
, The Journal of Geometric Analysis, Volume 33 (2023) no. 5 | DOI:10.1007/s12220-023-01190-4 - Vector Fields of Constant Length on Punctured Spheres, The Volume of Vector Fields on Riemannian Manifolds, Volume 2336 (2023), p. 89 | DOI:10.1007/978-3-031-36857-8_5
- Area minimizing unit vector fields on antipodally punctured unit 2-sphere, Comptes Rendus. Mathématique, Volume 359 (2022) no. 10, p. 1225 | DOI:10.5802/crmath.258
- Poincaré index and the volume functional of unit vector fields on punctured spheres, manuscripta mathematica, Volume 161 (2020) no. 3-4, p. 487 | DOI:10.1007/s00229-019-01107-y
Cité par 6 documents. Sources : Crossref