[Calcul
Nous donnons une condition nécessaire et suffisante en termes de théorèmes de dilatation pour que le calcul
We characterise the boundedness of the
Mots-clés :
@article{BSMF_2006__134_4_487_0, author = {Fr\"ohlich, Andreas M. and Weis, Lutz}, title = {$H^\infty $ calculus and dilatations}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {487--508}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {134}, number = {4}, year = {2006}, doi = {10.24033/bsmf.2520}, mrnumber = {2364942}, zbl = {1168.47015}, language = {en}, url = {https://www.numdam.org/articles/10.24033/bsmf.2520/} }
TY - JOUR AU - Fröhlich, Andreas M. AU - Weis, Lutz TI - $H^\infty $ calculus and dilatations JO - Bulletin de la Société Mathématique de France PY - 2006 SP - 487 EP - 508 VL - 134 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2520/ DO - 10.24033/bsmf.2520 LA - en ID - BSMF_2006__134_4_487_0 ER -
%0 Journal Article %A Fröhlich, Andreas M. %A Weis, Lutz %T $H^\infty $ calculus and dilatations %J Bulletin de la Société Mathématique de France %D 2006 %P 487-508 %V 134 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2520/ %R 10.24033/bsmf.2520 %G en %F BSMF_2006__134_4_487_0
Fröhlich, Andreas M.; Weis, Lutz. $H^\infty $ calculus and dilatations. Bulletin de la Société Mathématique de France, Tome 134 (2006) no. 4, pp. 487-508. doi : 10.24033/bsmf.2520. https://www.numdam.org/articles/10.24033/bsmf.2520/
[1] « The Kato square root problem for higher order elliptic operators and systems on
[2] Square root problem for divergence operators and related topics, Astérisque, vol. 249, Soc. Math. France, 1998. | Numdam | MR | Zbl
& -[3] « Martingale transforms and the geometry of Banach spaces », Springer Lecture Notes in Math., vol. 860, 1981, p. 35-50. | MR | Zbl
-
[4] « Banach space operators with a bounded
[5]
[6] Linear Operators III - Spectral Operators, John Wiley & Sons Inc., 1972. | MR | Zbl
& -[7] One-Parameter Semigroups for Linear Evolution Equations, Springer, 1999. | MR | Zbl
& -
[8] «
[9] « Functional calculi for linear operators in vector-valued
[10] « A remark on sectorial operators with an
[11] « Perturbation and interpolation theorems for the
[12] « Euclidean structures and their applications to spectral theory », in preparation.
& -
[13] -, « The
[14] -, « The
[15] « Maximal regularity for parabolic equations, Fourier multiplier theorems, and
[16] « A generalized
[17] «
[18] -, « The similarity problem for bounded analytic semigroups on Hilbert space », Semigroup Forum 56 (1998), p. 205-224. | MR | Zbl
[19] « Operators which have an
[20] The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Math., vol. 94, Cambridge University Press, 1989. | MR | Zbl
-[21] The Adjoint of a Semigroup of Linear Operators, Springer Lecture Notes in Math., vol. 1529, 1993. | MR | Zbl
-
[22] « The
Cité par Sources :