[Dimension des points faiblement dilatants pour l'application quadratique]
Pour l’application quadratique réelle
For the real quadratic map
Keywords: quadratic map, Jakobson's theorem, Hausdorff dimension, Markov partition, Bernoulli map, induced expansion, absolutely continuous invariant probability measure
Mot clés : application quadratique, théorème de Jakobson, dimension de Hausdorff, partition de Markov, application de Bernoulli, expansion induite, mesure de probabilité invariante absolument continue
@article{BSMF_2003__131_3_399_0, author = {Senti, Samuel}, title = {Dimension of weakly expanding points for quadratic maps}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {399--420}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {131}, number = {3}, year = {2003}, doi = {10.24033/bsmf.2448}, mrnumber = {2017145}, zbl = {1071.37028}, language = {en}, url = {https://www.numdam.org/articles/10.24033/bsmf.2448/} }
TY - JOUR AU - Senti, Samuel TI - Dimension of weakly expanding points for quadratic maps JO - Bulletin de la Société Mathématique de France PY - 2003 SP - 399 EP - 420 VL - 131 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2448/ DO - 10.24033/bsmf.2448 LA - en ID - BSMF_2003__131_3_399_0 ER -
%0 Journal Article %A Senti, Samuel %T Dimension of weakly expanding points for quadratic maps %J Bulletin de la Société Mathématique de France %D 2003 %P 399-420 %V 131 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2448/ %R 10.24033/bsmf.2448 %G en %F BSMF_2003__131_3_399_0
Senti, Samuel. Dimension of weakly expanding points for quadratic maps. Bulletin de la Société Mathématique de France, Tome 131 (2003) no. 3, pp. 399-420. doi : 10.24033/bsmf.2448. https://www.numdam.org/articles/10.24033/bsmf.2448/
[1] « Regular or stochastic dynamics in real analytic families of unimodal maps », Preprint, 2001. | Zbl
, & -[2] « Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative », Geometric Methods in Dynamics (I) (W. de Melo, M. Viana & J.-C. Yoccoz, éds.), Astérisque, vol. 286, Soc. Math. France, Paris, 2003, p. 81-118. | Numdam | MR | Zbl
& -[3] -, « Statistical properties of unimodal maps: the quadratic family », to appear in Ann. of Math., 2003. | Zbl
[4] « On iterations of
[5] -, « The dynamics of the Hénon map », 133 (1991), no. 1, p. 73-169. | MR | Zbl
[6] Equilibrium states, vol. 470, Springer Verlag, 1975. | MR | Zbl
-[7] Fractal Geometry; Mathematical Foundations and Applications, John Wiley, 1990. | MR | Zbl
-[8] « Generic hyperbolicity in the logistic family », 146 (1997), no. 1, p. 1-52. | MR | Zbl
& -[9] « Absolutely continuous invariant measures for one-parameter families of one-dimensional maps », 81 (1981), no. 1, p. 39-88. | MR | Zbl
-[10] « Bounded recurrence of critical points and Jakobson's theorem », The Mandelbrot set, theme and variations, Cambridge Univ. Press, Cambridge, 2000, p. 173-210. | MR | Zbl
-[11] « Dynamics of quadratic polynomials. I, II », 178 (1997), no. 2, p. 185-247, 247-297. | MR | Zbl
-[12] One-dimensional dynamics, Springer-Verlag, Berlin, 1993. | MR | Zbl
& -[13] « Representations for real numbers and their ergodic properties », Acta Math. Acad. Sci. Hungar 8 (1957), p. 477-493. | MR | Zbl
-[14] « Another proof of Jakobson's theorem and related results », 8 (1988), no. 1, p. 93-109. | MR | Zbl
-[15] « Dimension de Hausdorff de l'ensemble exceptionnel dans le théorème de Jakobson », Thèse, Université de Paris-Sud, 2000, available at http://www.math.psu.edu/senti.
-[16] « A proof of Benedicks-Carleson-Jacobson theorem », 16 (1993), no. 2, p. 295-310. | MR | Zbl
-[17] « Jakobson's Theorem », Manuscript of Course at Collège de France, 1997.
-- Equilibrium states, pressure and escape for multimodal maps with holes, Israel Journal of Mathematics, Volume 221 (2017) no. 1, p. 367 | DOI:10.1007/s11856-017-1547-2
- Lifting measures to inducing schemes, Ergodic Theory and Dynamical Systems, Volume 28 (2008) no. 2, p. 553 | DOI:10.1017/s0143385707000806
- Stochastic-Like Behaviour in Nonuniformly Expanding Maps, Volume 1 (2006), p. 265 | DOI:10.1016/s1874-575x(06)80028-7
Cité par 3 documents. Sources : Crossref