Les SO(3)-variétés symplectiques et leur classification en dimension 4
Bulletin de la Société Mathématique de France, Tome 119 (1991) no. 3, pp. 371-396.
@article{BSMF_1991__119_3_371_0,
     author = {Iglesias, Patrick},
     title = {Les $SO(3)$-vari\'et\'es symplectiques et leur classification en dimension 4},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {371--396},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {119},
     number = {3},
     year = {1991},
     doi = {10.24033/bsmf.2172},
     mrnumber = {92i:57023},
     zbl = {0745.53027},
     language = {fr},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2172/}
}
TY  - JOUR
AU  - Iglesias, Patrick
TI  - Les $SO(3)$-variétés symplectiques et leur classification en dimension 4
JO  - Bulletin de la Société Mathématique de France
PY  - 1991
SP  - 371
EP  - 396
VL  - 119
IS  - 3
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2172/
DO  - 10.24033/bsmf.2172
LA  - fr
ID  - BSMF_1991__119_3_371_0
ER  - 
%0 Journal Article
%A Iglesias, Patrick
%T Les $SO(3)$-variétés symplectiques et leur classification en dimension 4
%J Bulletin de la Société Mathématique de France
%D 1991
%P 371-396
%V 119
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2172/
%R 10.24033/bsmf.2172
%G fr
%F BSMF_1991__119_3_371_0
Iglesias, Patrick. Les $SO(3)$-variétés symplectiques et leur classification en dimension 4. Bulletin de la Société Mathématique de France, Tome 119 (1991) no. 3, pp. 371-396. doi : 10.24033/bsmf.2172. https://www.numdam.org/articles/10.24033/bsmf.2172/

[Aud88] Audin (M.). - Hamiltoniens périodiques sur les variétés symplectiques compactes de dimension 4. - Prétirage 369P/P-204, Institut de Recherche mathématique Avancé de Strasbourg, 1988. | Zbl

[Aud89] Audin (M.). - Opérations hamiltoniennes des tores sur les variétés symplectiques. - Polycopié, Institut de Recherche mathématique Avancé de Strasbourg, 1989.

[Bre72] Bredon (G.E.). - Introduction to compact transformation groups. - Academic Press, New-York, 1972. | MR | Zbl

[Del88] Delzant (T.). - Hamiltoniens périodiques et images convexes de l'application moment, Bulletin de la SMF, t. 116, 1988. | EuDML | Numdam | MR | Zbl

[Del90] Delzant (T.). - Classifications des actions hamiltoniennes complètement intégrables des groupes de rang 2, Annals of Global Analysis and Geometry, t. 8 (1), 1990, p. 87-112. | MR | Zbl

[Igl84] Iglesias (P.). - Classification des SO(3)-variétés symplectiques de dimension 4. - Prétirage CPT-84/PE.1673, CPT-CNRS, Luminy, Marseille (France), 1984.

[MW74] J. Marsden and A. Weinstein. - On reduction of symplectic manifold, Rep. Math. Phys., t. 5, 1974, p. 421. | MR | Zbl

[Pal60] Palais (P.). - The classification of G-spaces, Mem. Amer. Math. Soc, t. 36, 1960. | Zbl

[Poé76] Poénaru (V.). - Singularité C∞ en présence de symétrie. - Lecture Notes in Mathematics, 510, 1976. | MR | Zbl

[Sou70] Souriau (J.M.). - Structure des systèmes dynamiques. - Dunod, Paris, 1970. | MR | Zbl

[Wol72] Wolf (J.). - Spaces of constant curvature. - Berkeley, Californie, 1972. | MR

  • Gürer, Serap Klein Stratification of Orbit Spaces: Examples, International Electronic Journal of Geometry, Volume 16 (2023) no. 2, p. 665 | DOI:10.36890/iejg.1364214
  • Polterovich, Leonid; Shalom, Yehuda; Shem‐Tov, Zvi Norm rigidity for arithmetic and profinite groups, Journal of the London Mathematical Society, Volume 107 (2023) no. 4, p. 1552 | DOI:10.1112/jlms.12719
  • Ratiu, Tudor; Wacheux, Christophe; Zung, Nguyen Convexity of Singular Affine Structures and Toric-Focus Integrable Hamiltonian Systems, Memoirs of the American Mathematical Society, Volume 287 (2023) no. 1424 | DOI:10.1090/memo/1424
  • Paulus, Kay; Pezzini, Guido; Van Steirteghem, Bart On Some Families of Smooth Affine Spherical Varieties of Full Rank, Acta Mathematica Sinica, English Series, Volume 34 (2018) no. 3, p. 563 | DOI:10.1007/s10114-018-7244-1
  • LANE, J. CONVEXITY AND THIMM’S TRICK, Transformation Groups, Volume 23 (2018) no. 4, p. 963 | DOI:10.1007/s00031-017-9436-7
  • Lê, Hông Vân Corrigendum to “Compact symplectic manifolds of low cohomogeneity” [J. Geom. Phys. 25 (1998) 205–226], Journal of Geometry and Physics, Volume 96 (2015), p. 212 | DOI:10.1016/j.geomphys.2015.05.010
  • Karshon, Yael; Tolman, Susan Classification of Hamiltonian torus actions with two-dimensional quotients, Geometry Topology, Volume 18 (2014) no. 2, p. 669 | DOI:10.2140/gt.2014.18.669
  • Abreu, Miguel; Granja, Gustavo; Kitchloo, Nitu Compatible complex structures on symplectic rational ruled surfaces, Duke Mathematical Journal, Volume 148 (2009) no. 3 | DOI:10.1215/00127094-2009-033
  • Niederkrüger, Klaus Five-Dimensional Contact SU(2)- and SO(3)-Manifolds and Dehn Twists, Geometriae Dedicata, Volume 117 (2006) no. 1, p. 85 | DOI:10.1007/s10711-005-9014-3
  • Abreu, Miguel; McDuff, Dusa Topology of symplectomorphism groups of rational ruled surfaces, Journal of the American Mathematical Society, Volume 13 (2000) no. 4, p. 971 | DOI:10.1090/s0894-0347-00-00344-1
  • Vân Lê, Hông Compact symplectic manifolds of low cohomogeneity, Journal of Geometry and Physics, Volume 25 (1998) no. 3-4, p. 205 | DOI:10.1016/s0393-0440(97)00018-1
  • Brion, Michel Equivariant cohomology and equivariant intersection theory, Representation Theories and Algebraic Geometry (1998), p. 1 | DOI:10.1007/978-94-015-9131-7_1
  • Woodward, Chris The classification of transversal multiplicity-free group actions, Annals of Global Analysis and Geometry, Volume 14 (1996) no. 1, p. 3 | DOI:10.1007/bf00128193
  • Azad, H. A remark on the moment map, Proceedings of the American Mathematical Society, Volume 121 (1994) no. 4, p. 1295 | DOI:10.1090/s0002-9939-1994-1191865-4

Cité par 14 documents. Sources : Crossref