@article{BSMF_1988__116_4_401_0, author = {Bourdaud, G\'erard and Meyer, Yves}, title = {In\'egalit\'es $L^2$ pr\'ecis\'ees pour la classe $S^0_{0,0}$}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {401--412}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {116}, number = {4}, year = {1988}, doi = {10.24033/bsmf.2103}, mrnumber = {90h:47092}, zbl = {0693.35166}, language = {fr}, url = {https://www.numdam.org/articles/10.24033/bsmf.2103/} }
TY - JOUR AU - Bourdaud, Gérard AU - Meyer, Yves TI - Inégalités $L^2$ précisées pour la classe $S^0_{0,0}$ JO - Bulletin de la Société Mathématique de France PY - 1988 SP - 401 EP - 412 VL - 116 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2103/ DO - 10.24033/bsmf.2103 LA - fr ID - BSMF_1988__116_4_401_0 ER -
%0 Journal Article %A Bourdaud, Gérard %A Meyer, Yves %T Inégalités $L^2$ précisées pour la classe $S^0_{0,0}$ %J Bulletin de la Société Mathématique de France %D 1988 %P 401-412 %V 116 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2103/ %R 10.24033/bsmf.2103 %G fr %F BSMF_1988__116_4_401_0
Bourdaud, Gérard; Meyer, Yves. Inégalités $L^2$ précisées pour la classe $S^0_{0,0}$. Bulletin de la Société Mathématique de France, Tome 116 (1988) no. 4, pp. 401-412. doi : 10.24033/bsmf.2103. https://www.numdam.org/articles/10.24033/bsmf.2103/
[1] On the boundedness of pseudo-differential operators, J. Math. Soc. Japan, t. 23, 1971, p. 374-378. | MR | Zbl
and . -[2] Au-delà des opérateurs pseudo-différentiels, [Astérisque 57], Soc. Math. France, 1978. | Numdam | MR | Zbl
et . -[3] On compactness of commutators of multiplications and convolutions, and boundedness of pseudo-differential operators, J. Funct. Anal., t. 18, 1975, p. 115-131. | MR | Zbl
. -[4] Pseudo-differential operators and hypoelliptic equations, Proc. Sympos. Pure Math., t. 10, 1966, p. 138-183. | Zbl
. -[5] The L2 Boundedness of pseudo-differential Operators, Trans. Amer. Math. Soc., t. 302, 1987, p. 55-76. | MR | Zbl
. -[6] Boundedness of some pseudo-differential operators, Osaka J. Math., t. 13, 1976, p. 1-9. | MR | Zbl
. -[7] Singular integrals and differentiability properties of functions. Princeton, University Press, 1970. | MR | Zbl
. -[8] Pseudodifferential operators. - Princeton, University Press, 1981. | MR | Zbl
. -[9] Basic linear partial differential equations. - Academic Press, 1975. | MR | Zbl
. -- Lp Boundedness of Fourier Integral Operators in the Class S0,0, Acta Mathematica Sinica, English Series, Volume 38 (2022) no. 9, p. 1551 | DOI:10.1007/s10114-022-9397-1
- Boundedness of non regular pseudodifferential operators on variable Besov spaces, Journal of Pseudo-Differential Operators and Applications, Volume 8 (2017) no. 2, p. 167 | DOI:10.1007/s11868-016-0161-0
- Bilinear pseudodifferential operators with symbols in Besov spaces, Journal of Pseudo-Differential Operators and Applications, Volume 5 (2014) no. 2, p. 231 | DOI:10.1007/s11868-013-0085-x
- Normal forms for semilinear superquadratic quantum oscillators, Journal of Differential Equations, Volume 252 (2012) no. 3, p. 2025 | DOI:10.1016/j.jde.2011.10.008
- Lp continuity of hörmander symbol operators and numerical algorithm, Acta Mathematica Scientia, Volume 31 (2011) no. 4, p. 1517 | DOI:10.1016/s0252-9602(11)60338-x
- Estimations l2precisees pour des integrales oscillantes, Communications in Partial Differential Equations, Volume 22 (1997) no. 1-2, p. 165 | DOI:10.1080/03605309708821259
- 𝐿^𝑝-boundedness of pseudo-differential operators of class 𝑆_0,0, Transactions of the American Mathematical Society, Volume 346 (1994) no. 2, p. 489 | DOI:10.1090/s0002-9947-1994-1264147-4
Cité par 7 documents. Sources : Crossref