Odd values of the Ramanujan τ-function
Bulletin de la Société Mathématique de France, Tome 115 (1987), pp. 391-395.
@article{BSMF_1987__115__391_0,
     author = {Murty, M.Ram and Murty, V.Kumar and Shorey, T.N.},
     title = {Odd values of the {Ramanujan} $\tau $-function},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {391--395},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {115},
     year = {1987},
     doi = {10.24033/bsmf.2083},
     mrnumber = {89c:11071},
     zbl = {0635.10020},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/bsmf.2083/}
}
TY  - JOUR
AU  - Murty, M.Ram
AU  - Murty, V.Kumar
AU  - Shorey, T.N.
TI  - Odd values of the Ramanujan $\tau $-function
JO  - Bulletin de la Société Mathématique de France
PY  - 1987
SP  - 391
EP  - 395
VL  - 115
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.2083/
DO  - 10.24033/bsmf.2083
LA  - en
ID  - BSMF_1987__115__391_0
ER  - 
%0 Journal Article
%A Murty, M.Ram
%A Murty, V.Kumar
%A Shorey, T.N.
%T Odd values of the Ramanujan $\tau $-function
%J Bulletin de la Société Mathématique de France
%D 1987
%P 391-395
%V 115
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.2083/
%R 10.24033/bsmf.2083
%G en
%F BSMF_1987__115__391_0
Murty, M.Ram; Murty, V.Kumar; Shorey, T.N. Odd values of the Ramanujan $\tau $-function. Bulletin de la Société Mathématique de France, Tome 115 (1987), pp. 391-395. doi : 10.24033/bsmf.2083. https://www.numdam.org/articles/10.24033/bsmf.2083/

[1] Baker (A.), A sharpening of the bounds for linear forms in logarithms I, Acta Arith., Vol. 21, 1972, pp. 117-129. | MR | Zbl

[2] Baker (A.), A sharpening of the bounds for linear forms in logarithms II, Acta Arith., Vol. 24, 1973, pp. 33-36. | MR | Zbl

[3] Feldam (N. L.), An effective refinement of the exponent in Liouville's theorem (Russian), Izv. Akad. Nauk., Vol. 35, 1971, pp. 973-900.

[4] Ramanujan (S.), On certain arithmetical functions, Trans. Cambr. Phil. Soc., Vol. 22, 1916, pp. 159-184.

[5] Roth (K. F.), Rational approximations to algebraic numbers, Mathematika, Vol. 2, 1955, pp. 1-20. | MR | Zbl

[6] Serre (J.-P.), Divisibilité de certaines fonction arithmétiques, L'Ens. Math., Vol. 22, 1976, pp. 227-260. | MR | Zbl

[7] Sprindzuk (V. G.), Hyperelliptic diophantine equations and class numbers of ideals (Russian), Acta Arith., Vol. 30, 1976, pp. 95-108. | MR | Zbl

  • Gun, Sanoli; Naik, Sunil L. On the largest prime factor of non-zero Fourier coefficients of Hecke eigenforms, Forum Mathematicum, Volume 36 (2024) no. 1, p. 173 | DOI:10.1515/forum-2023-0050
  • Kobayashi, Masato Ramanujan–Shen’s differential equations for Eisenstein series of level 2, Research in Number Theory, Volume 10 (2024) no. 2 | DOI:10.1007/s40993-024-00527-4
  • Lin, Wenwen; Ma, Wenjun On values of Ramanujan’s tau function involving two prime factors, The Ramanujan Journal, Volume 63 (2024) no. 1, p. 131 | DOI:10.1007/s11139-023-00702-8
  • Balakrishnan, Jennifer S.; Craig, William; Ono, Ken; Tsai, Wei-Lun Variants of Lehmer's speculation for newforms, Advances in Mathematics, Volume 428 (2023), p. 109141 | DOI:10.1016/j.aim.2023.109141
  • Amir, Malik; Hatziiliou, Andreas A short note on inadmissible coefficients of weight 2 and 2k+1 newforms, Annales mathématiques du Québec, Volume 47 (2023) no. 2, p. 389 | DOI:10.1007/s40316-021-00168-4
  • Balakrishnan, Jennifer S.; Craig, William; Ono, Ken Variations of Lehmer's Conjecture for Ramanujan's tau-function, Journal of Number Theory, Volume 237 (2022), p. 3 | DOI:10.1016/j.jnt.2020.04.009
  • Balakrishnan, Jennifer S.; Ono, Ken; Tsai, Wei-Lun Even Values of Ramanujan’s Tau-Function, La Matematica, Volume 1 (2022) no. 2, p. 395 | DOI:10.1007/s44007-021-00005-8
  • Bennett, Michael A.; Gherga, Adela; Patel, Vandita; Siksek, Samir Odd values of the Ramanujan tau function, Mathematische Annalen, Volume 382 (2022) no. 1-2, p. 203 | DOI:10.1007/s00208-021-02241-3
  • Amir, Malik; Hong, Letong On L-functions of modular elliptic curves and certain K3 surfaces, The Ramanujan Journal, Volume 57 (2022) no. 3, p. 1001 | DOI:10.1007/s11139-021-00388-w
  • Lakein, Kaya; Larsen, Anne Some remarks on small values of τ(n), Archiv der Mathematik, Volume 117 (2021) no. 6, p. 635 | DOI:10.1007/s00013-021-01661-6
  • Dembner, Spencer; Jain, Vanshika Hyperelliptic curves and newform coefficients, Journal of Number Theory, Volume 225 (2021), p. 214 | DOI:10.1016/j.jnt.2021.02.002
  • Gun, Sanoli; Murty, V. Kumar; Paul, Biplab Distinguishing newforms by their Hecke eigenvalues, Research in Number Theory, Volume 7 (2021) no. 3 | DOI:10.1007/s40993-021-00277-7
  • Bhand, Ajit; Gun, Sanoli; Rath, Purusottam A note on lower bounds of heights of non-zero Fourier coefficients of Hilbert cusp forms, Archiv der Mathematik, Volume 114 (2020) no. 3, p. 285 | DOI:10.1007/s00013-019-01416-4
  • Luca, Florian; Mabaso, Sibusiso; Stănică, Pantelimon On the prime factors of the iterates of the Ramanujan τ–function, Proceedings of the Edinburgh Mathematical Society, Volume 63 (2020) no. 4, p. 1031 | DOI:10.1017/s0013091520000310
  • Murty, M. Ram; Murty, V. Kumar The Ramanujan τ-Function, The Mathematical Legacy of Srinivasa Ramanujan (2013), p. 11 | DOI:10.1007/978-81-322-0770-2_2
  • Lygeros, Nik; Rozier, Olivier Odd prime values of the Ramanujan tau function, The Ramanujan Journal, Volume 32 (2013) no. 2, p. 269 | DOI:10.1007/s11139-012-9420-8
  • Murty, M. Ram; Murty, V. Kumar A variant of the Lang–Trotter conjecture, Number Theory, Analysis and Geometry (2012), p. 461 | DOI:10.1007/978-1-4614-1260-1_21
  • Andrews, George E.; Berndt, Bruce C. Ramanujan’s Unpublished Manuscript on the Partition and Tau Functions, Ramanujan's Lost Notebook (2012), p. 89 | DOI:10.1007/978-1-4614-3810-6_5
  • Narkiewicz, Władysław The First Years, Rational Number Theory in the 20th Century (2012), p. 13 | DOI:10.1007/978-0-85729-532-3_2
  • Elliott, P. D. T. A. A central limit theorem for Ramanujan’s tau function, The Ramanujan Journal, Volume 29 (2012) no. 1-3, p. 145 | DOI:10.1007/s11139-011-9367-1
  • Luca, Florian; Shparlinski, Igor E. Arithmetic properties of the Ramanujan function, Proceedings of the Indian Academy of Sciences - Section A, Volume 116 (2006) no. 1, p. 1 | DOI:10.1007/bf02829735

Cité par 21 documents. Sources : Crossref