@article{BSMF_1987__115__391_0, author = {Murty, M.Ram and Murty, V.Kumar and Shorey, T.N.}, title = {Odd values of the {Ramanujan} $\tau $-function}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {391--395}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {115}, year = {1987}, doi = {10.24033/bsmf.2083}, mrnumber = {89c:11071}, zbl = {0635.10020}, language = {en}, url = {https://www.numdam.org/articles/10.24033/bsmf.2083/} }
TY - JOUR AU - Murty, M.Ram AU - Murty, V.Kumar AU - Shorey, T.N. TI - Odd values of the Ramanujan $\tau $-function JO - Bulletin de la Société Mathématique de France PY - 1987 SP - 391 EP - 395 VL - 115 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2083/ DO - 10.24033/bsmf.2083 LA - en ID - BSMF_1987__115__391_0 ER -
%0 Journal Article %A Murty, M.Ram %A Murty, V.Kumar %A Shorey, T.N. %T Odd values of the Ramanujan $\tau $-function %J Bulletin de la Société Mathématique de France %D 1987 %P 391-395 %V 115 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2083/ %R 10.24033/bsmf.2083 %G en %F BSMF_1987__115__391_0
Murty, M.Ram; Murty, V.Kumar; Shorey, T.N. Odd values of the Ramanujan $\tau $-function. Bulletin de la Société Mathématique de France, Tome 115 (1987), pp. 391-395. doi : 10.24033/bsmf.2083. https://www.numdam.org/articles/10.24033/bsmf.2083/
[1] A sharpening of the bounds for linear forms in logarithms I, Acta Arith., Vol. 21, 1972, pp. 117-129. | MR | Zbl
,[2] A sharpening of the bounds for linear forms in logarithms II, Acta Arith., Vol. 24, 1973, pp. 33-36. | MR | Zbl
,[3] An effective refinement of the exponent in Liouville's theorem (Russian), Izv. Akad. Nauk., Vol. 35, 1971, pp. 973-900.
,[4] On certain arithmetical functions, Trans. Cambr. Phil. Soc., Vol. 22, 1916, pp. 159-184.
,[5] Rational approximations to algebraic numbers, Mathematika, Vol. 2, 1955, pp. 1-20. | MR | Zbl
,[6] Divisibilité de certaines fonction arithmétiques, L'Ens. Math., Vol. 22, 1976, pp. 227-260. | MR | Zbl
,[7] Hyperelliptic diophantine equations and class numbers of ideals (Russian), Acta Arith., Vol. 30, 1976, pp. 95-108. | MR | Zbl
,- On the largest prime factor of non-zero Fourier coefficients of Hecke eigenforms, Forum Mathematicum, Volume 36 (2024) no. 1, p. 173 | DOI:10.1515/forum-2023-0050
- Ramanujan–Shen’s differential equations for Eisenstein series of level 2, Research in Number Theory, Volume 10 (2024) no. 2 | DOI:10.1007/s40993-024-00527-4
- On values of Ramanujan’s tau function involving two prime factors, The Ramanujan Journal, Volume 63 (2024) no. 1, p. 131 | DOI:10.1007/s11139-023-00702-8
- Variants of Lehmer's speculation for newforms, Advances in Mathematics, Volume 428 (2023), p. 109141 | DOI:10.1016/j.aim.2023.109141
- A short note on inadmissible coefficients of weight 2 and
newforms, Annales mathématiques du Québec, Volume 47 (2023) no. 2, p. 389 | DOI:10.1007/s40316-021-00168-4 - Variations of Lehmer's Conjecture for Ramanujan's tau-function, Journal of Number Theory, Volume 237 (2022), p. 3 | DOI:10.1016/j.jnt.2020.04.009
- Even Values of Ramanujan’s Tau-Function, La Matematica, Volume 1 (2022) no. 2, p. 395 | DOI:10.1007/s44007-021-00005-8
- Odd values of the Ramanujan tau function, Mathematische Annalen, Volume 382 (2022) no. 1-2, p. 203 | DOI:10.1007/s00208-021-02241-3
- On L-functions of modular elliptic curves and certain K3 surfaces, The Ramanujan Journal, Volume 57 (2022) no. 3, p. 1001 | DOI:10.1007/s11139-021-00388-w
- Some remarks on small values of
, Archiv der Mathematik, Volume 117 (2021) no. 6, p. 635 | DOI:10.1007/s00013-021-01661-6 - Hyperelliptic curves and newform coefficients, Journal of Number Theory, Volume 225 (2021), p. 214 | DOI:10.1016/j.jnt.2021.02.002
- Distinguishing newforms by their Hecke eigenvalues, Research in Number Theory, Volume 7 (2021) no. 3 | DOI:10.1007/s40993-021-00277-7
- A note on lower bounds of heights of non-zero Fourier coefficients of Hilbert cusp forms, Archiv der Mathematik, Volume 114 (2020) no. 3, p. 285 | DOI:10.1007/s00013-019-01416-4
- On the prime factors of the iterates of the Ramanujan τ–function, Proceedings of the Edinburgh Mathematical Society, Volume 63 (2020) no. 4, p. 1031 | DOI:10.1017/s0013091520000310
- The Ramanujan τ-Function, The Mathematical Legacy of Srinivasa Ramanujan (2013), p. 11 | DOI:10.1007/978-81-322-0770-2_2
- Odd prime values of the Ramanujan tau function, The Ramanujan Journal, Volume 32 (2013) no. 2, p. 269 | DOI:10.1007/s11139-012-9420-8
- A variant of the Lang–Trotter conjecture, Number Theory, Analysis and Geometry (2012), p. 461 | DOI:10.1007/978-1-4614-1260-1_21
- Ramanujan’s Unpublished Manuscript on the Partition and Tau Functions, Ramanujan's Lost Notebook (2012), p. 89 | DOI:10.1007/978-1-4614-3810-6_5
- The First Years, Rational Number Theory in the 20th Century (2012), p. 13 | DOI:10.1007/978-0-85729-532-3_2
- A central limit theorem for Ramanujan’s tau function, The Ramanujan Journal, Volume 29 (2012) no. 1-3, p. 145 | DOI:10.1007/s11139-011-9367-1
- Arithmetic properties of the Ramanujan function, Proceedings of the Indian Academy of Sciences - Section A, Volume 116 (2006) no. 1, p. 1 | DOI:10.1007/bf02829735
Cité par 21 documents. Sources : Crossref