In this paper, we consider the problem of multiplicity of conformal metrics of prescribed scalar curvature on standard spheres
@article{ASNSP_2008_5_7_4_609_0, author = {Ben Ayed, Mohamed and Ould Ahmedou, Mohameden}, title = {Multiplicity results for the prescribed scalar curvature on low spheres}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {609--634}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 7}, number = {4}, year = {2008}, mrnumber = {2483638}, zbl = {1213.58009}, language = {en}, url = {https://www.numdam.org/item/ASNSP_2008_5_7_4_609_0/} }
TY - JOUR AU - Ben Ayed, Mohamed AU - Ould Ahmedou, Mohameden TI - Multiplicity results for the prescribed scalar curvature on low spheres JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2008 SP - 609 EP - 634 VL - 7 IS - 4 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2008_5_7_4_609_0/ LA - en ID - ASNSP_2008_5_7_4_609_0 ER -
%0 Journal Article %A Ben Ayed, Mohamed %A Ould Ahmedou, Mohameden %T Multiplicity results for the prescribed scalar curvature on low spheres %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2008 %P 609-634 %V 7 %N 4 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2008_5_7_4_609_0/ %G en %F ASNSP_2008_5_7_4_609_0
Ben Ayed, Mohamed; Ould Ahmedou, Mohameden. Multiplicity results for the prescribed scalar curvature on low spheres. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 7 (2008) no. 4, pp. 609-634. https://www.numdam.org/item/ASNSP_2008_5_7_4_609_0/
[1] Estimates near the boundary for solutions of elliptic partial differential equatins satisfying general boundary value conditions, I, Comm. Pure Appl. Math. 12 (1959), 623-727. | MR | Zbl
, and ,
[2] Perturbation of
[3] Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269-296. | MR | Zbl
,[4] Meilleures constantes de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal. 32 (1979), 148-174. | MR | Zbl
,[5] “Some nonlinear problems in Riemannian geometry”, Springer Monographs Math., Springer Verlag, Berlin, 1998. | MR | Zbl
,[6] Méthodes de topologie algébrique pour le problème de la courbure scalaire prescrite. (French) [Methods of algebraic topology for the problem of prescribed scalar curvature], J. Math. Pures Appl. 76 (1997), 525-849. | MR | Zbl
and ,[7] Une hypothèse topologique pour le problème de la courbure scalaire prescrite. (French) [A topological hypothesis for the problem of prescribed scalar curvature], J. Math. Pures Appl. 76 (1997), 843-850. | MR | Zbl
and ,[8] Courbure scalaire prescrite, Bull. Sci. Math. 115 (1991), 125-132. | MR | Zbl
and ,[9] “Critical points at infinity in some variational problems”, Pitman Res. Notes Math. Ser. Longman Sci. Tech. Harlow, Vol. 182, 1989. | MR | Zbl
,[10] An invariant for Yamabe-type flows with applications to scalar curvature problems in high dimension, A celebration of J. F. Nash Jr., Duke Math. J. 81 (1996), 323-466. | MR | Zbl
,[11] On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of topology of the domain, Comm. Pure Appl. Math. 41 (1988), 255-294. | MR | Zbl
and ,[12] The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal. 95 (1991), 106-172. | MR | Zbl
and ,
[13] Periodic solutions of
[14] On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J. 84 (1996), 633-677. | MR | Zbl
, , and ,[15] Chtioui and M. Hammami, The scalar curvature problem on higher dimensional spheres, Duke Math. J. 93 (1998), 379-424. | MR | Zbl
[16] Convergence of solutions of
[17] Asymptotic symetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297. | MR | Zbl
, and ,[18] The scalar curvature equation on 2 and 3 spheres, Calc. Var. Partial Differential Equations 1 (1993), 205-229. | MR | Zbl
, and ,[19] On Nirenberg's problem, Internat. J. Math. (1993), 53-58. | MR | Zbl
and ,
[20] Prescribing Gaussian curvature on
[21] A perturbation result in prescribing scalar curvature on
[22] Estimates of the scalar curvature via the method of moving planes I, Comm. Pure Appl. Math. 50 (1997), 971-1017. | MR | Zbl
and ,[23] Estimates of the scalar curvature via the method of moving planes II, J. Differential Geom. 49 (1998), 115-178. | MR | Zbl
and ,
[24] Prescribing the scalar curvature on
[25] Conformal metrics of prescribed scalar curvature on
[26] “Lectures on algebraic topology”, Springer Verlag, Berlin, 1995. | MR | Zbl
,[27] Conformal metrics with prescribed scalar curvature, Invent. Math. 86 (1986), 243-254. | MR | Zbl
and ,[28] Changements de metriques conformes sur la sphere, le problème de Nirenberg, Bull. Sci. Math. 114 (1990), 215-242. | MR | Zbl
,[29] The isometry concentration method in the case of a nonlinear problem with Sobolev critical exponent on compact manifolds with boundary, Bull. Sci. Math. 116 (1992), 35-51. | MR | Zbl
,
[30] Prescribing scalar curvature on
[31] Prescribing scalar curvature on
[32] Estimates of the scalar curvature via the method of moving planes III, Comm. Pure Appl. Math. 53 (2000), 611-646. | MR | Zbl
,[33] The concentration compactness principle in the calculus of variations. The limt case, Rev. Mat. Iberoamericana 1 (1985), I:165-201, II: 45-121. | MR | Zbl
,
[34] “Lectures on
[35] The role of Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), 1-52. | MR | Zbl
,
[36] Prescribing scalar curvature on
[37] Prescribed scalar curvature on the n-sphere, Calc. Var. Partial Differential Equations 4 (1996), 1-25. | MR | Zbl
and ,[38] A flow approach to Nirenberg problem, Duke Math. J. 128 (2005), 19-64. | MR | Zbl
,
[39] “Variational methods: Applications to nonlinear PDE
[40] A global compactness result for elliptic boundary value problems involving nonlinearities, Math. Z. 187 (1984), 511-517. | MR | Zbl
,