We study a singular perturbation problem arising in the scalar two-phase field model. Given a sequence of functions with a uniform bound on the surface energy, assume the Sobolev norms
@article{ASNSP_2005_5_4_3_487_0, author = {Tonegawa, Yoshihiro}, title = {A diffused interface whose chemical potential lies in a {Sobolev} space}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {487--510}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {3}, year = {2005}, mrnumber = {2185866}, zbl = {1170.35416}, language = {en}, url = {https://www.numdam.org/item/ASNSP_2005_5_4_3_487_0/} }
TY - JOUR AU - Tonegawa, Yoshihiro TI - A diffused interface whose chemical potential lies in a Sobolev space JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 487 EP - 510 VL - 4 IS - 3 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2005_5_4_3_487_0/ LA - en ID - ASNSP_2005_5_4_3_487_0 ER -
%0 Journal Article %A Tonegawa, Yoshihiro %T A diffused interface whose chemical potential lies in a Sobolev space %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 487-510 %V 4 %N 3 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2005_5_4_3_487_0/ %G en %F ASNSP_2005_5_4_3_487_0
Tonegawa, Yoshihiro. A diffused interface whose chemical potential lies in a Sobolev space. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 3, pp. 487-510. https://www.numdam.org/item/ASNSP_2005_5_4_3_487_0/
[1] On the first variation of a varifold, Ann. of Math. 95 (1972), 417-491. | MR | Zbl
,[2] On the approximation of the elastica functional in radial symmetry, Calc. Var. 24 (2005), 1-20. | MR | Zbl
and ,[3] Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258-267.
and ,[4] Global asymptotic limit of solutions of the Cahn-Hilliard equation, J. Differential Geom. 44 (1996), 262-141. | MR | Zbl
,[5] The phase field formulation of the Willmore problem, Nonlinearity 18 (2005), 1249-1267. | MR | Zbl
, , and ,[6] “Measure theory and fine properties of functions”, Studies in Advanced Math., CRC Press, 1992. | MR | Zbl
and ,[7] “Elliptic partial differential equations of second order”, 2nd Edition, Springer-Verlag, 1983. | MR | Zbl
and ,[8] Some results and conjectures in the gradient theory of phase transitions, In: “Metastability and incompletely posed problems”, S. Antman et al. (eds.), pp. 301-317, Springer, 1987. | MR | Zbl
,[9] Convergence of phase interfaces in the van der Waals - Cahn - Hilliard theory, Calc. Var. 10 (2000), 49-84. | MR | Zbl
and ,[10] The sharp-interface limit of the action functional for Allen Cahn in one space dimension, to appear in Cal. Var. | Zbl
, and ,[11] The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal. 98 (1987), 123-142. | MR | Zbl
,[12] A higher order asymptotic problem related to phase transitions, preprint. | MR
,[13] A singular perturbation problem with a Willmore-type energy bound, in preparation.
and ,[14] On the convergence of stable phase transitions, Comm. Pure Appl. Math. 51 (1998), 551-579. | MR | Zbl
and ,[15] On a modified conjecture of De Giorgi, in preparation.
and ,[16] Hypersurfaces with mean curvature given by an ambient Sobolev function, J. Diffefential Geom. 58 (2001), 371-420. | MR | Zbl
,[17] “Lectures on geometric measure theory”, Proc. Centre Math. Anal. Austral. Nat. Univ., Vol. 3, 1983. | MR | Zbl
,[18] The effect of a singular perturbation on nonconvex variational problems, Arch. Ration. Mech. Anal. 101 (1988), no. 3, 209-260. | MR | Zbl
,[19] Phase field model with a variable chemical potential, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), 993-1019. | MR | Zbl
,