We consider a class of perturbations of the degenerate Ornstein-Uhlenbeck operator in
@article{ASNSP_2005_5_4_2_255_0, author = {Lorenzi, Luca}, title = {Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in $\mathbb {R}^N$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {255--293}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 4}, number = {2}, year = {2005}, mrnumber = {2163557}, zbl = {1107.35071}, language = {en}, url = {https://www.numdam.org/item/ASNSP_2005_5_4_2_255_0/} }
TY - JOUR AU - Lorenzi, Luca TI - Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in $\mathbb {R}^N$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 255 EP - 293 VL - 4 IS - 2 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2005_5_4_2_255_0/ LA - en ID - ASNSP_2005_5_4_2_255_0 ER -
%0 Journal Article %A Lorenzi, Luca %T Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in $\mathbb {R}^N$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 255-293 %V 4 %N 2 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2005_5_4_2_255_0/ %G en %F ASNSP_2005_5_4_2_255_0
Lorenzi, Luca. Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in $\mathbb {R}^N$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 255-293. https://www.numdam.org/item/ASNSP_2005_5_4_2_255_0/
[1] Sur la généralisation du probléme de Dirichlet, I, Math. Ann. 62 (1906), 253-271. | JFM | MR
,[2] Analytic methods for Markov semigroups, Preprint 401, Dipartimento di Matematica, Università di Parma, 2005. | MR
and ,[3] Estimates of the derivatives for parabolic operators with unbounded coefficients, Trans. Amer. Math. Soc. (to appear). | MR | Zbl
and ,[4] Some results for second order elliptic operators having unbounded coefficients, Differential Integral Equations 11 (1998), 561-588. | MR | Zbl
,[5] Regularity results for some degenerate parabolic equations, Riv. Mat. Univ. Parma (6) 2* (1999), 245-257. | MR | Zbl
,[6] Gradient estimates for Dirichlet parabolic problems in unbounded domains, J. Differential Equations 205 (2004), 329-353. | MR | Zbl
, and ,[7] “Partial Differential Equations of Parabolic Type”, Prentice Hall, Englewood Cliffs, N.J., 1964. | MR | Zbl
,[8] “Stochastic Stability of Differential Equations”, Nauka 1969 (in Russian), English translation: Sijthoff and Noordhoff 1980. | MR
,[9] “Introduction to the Theory of Diffusion Processes”, American Mathematical Society 142, (1992). | MR | Zbl
,[10] “Linear and Quasilinear Equations of Parabolic Type”, Nauka, English transl.: American Mathematical Society, Providence, 1968. | Zbl
, and ,[11] “Second Order Parabolic Differential Equations”, World Scientific Publishing Co. Pte. Ltd, Singapore, New Jersey, London Hong Kong, 1996. | MR | Zbl
,[12] Schauder estimates for a class of degenerate elliptic and parabolic problems with unbounded coefficients, Differential Integral Equations 18 (2005), 531-566. | MR
,[13] “Analytic Semigroups and Optimal Regularity in Parabolic Problems”, Birkhäuser, Basel, 1995. | MR | Zbl
,
[14] Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in
[15] Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in
[16] The Dirichlet problem for a class of ultraparabolic equations, Adv. Differential Equations 2 (1997), 831-866. | MR | Zbl
,[17] A priori estimates for quasilinear degenerate parabolic equations, Proc. Amer. Math. Soc. 131 (2002), 1115-1120. | MR | Zbl
and ,
[18] Feller semigroups on
[19] Hölder regularity for a Kolmogorov equation, Trans. Amer. Math. Soc. 355 (2002), 901-924. | MR | Zbl
,[20] On a class of ultraparabolic operators of Kolmogorov-Fokker-Plank type, Matematiche (Catania) 49 (1994), 53-105 (1995). | MR | Zbl
,[21] The Cauchy problem for a class of Markov-type semigroups, Comm. Appl. Anal. 5 (2001), 49-75. | MR | Zbl
,