Compactness in the space
@article{ASNSP_2003_5_2_2_395_0, author = {Rossi, Riccarda and Savar\'e, Giuseppe}, title = {Tightness, integral equicontinuity and compactness for evolution problems in {Banach} spaces}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {395--431}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 2}, number = {2}, year = {2003}, mrnumber = {2005609}, zbl = {1150.46014}, language = {en}, url = {https://www.numdam.org/item/ASNSP_2003_5_2_2_395_0/} }
TY - JOUR AU - Rossi, Riccarda AU - Savaré, Giuseppe TI - Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2003 SP - 395 EP - 431 VL - 2 IS - 2 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_2003_5_2_2_395_0/ LA - en ID - ASNSP_2003_5_2_2_395_0 ER -
%0 Journal Article %A Rossi, Riccarda %A Savaré, Giuseppe %T Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2003 %P 395-431 %V 2 %N 2 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_2003_5_2_2_395_0/ %G en %F ASNSP_2003_5_2_2_395_0
Rossi, Riccarda; Savaré, Giuseppe. Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 2 (2003) no. 2, pp. 395-431. https://www.numdam.org/item/ASNSP_2003_5_2_2_395_0/
[1] Un théorème de compacité, C. R. Acad. Sci. Paris 256 (1963), 5042-5044. | MR | Zbl
,[2] A General Approach to Lower Semicontinuity and Lower Closure in Optimal Control Theory, SIAM J. Control Optim. 22 (1984 a), 570-568. | MR | Zbl
,[3] Intégrandes Normales et Mesures Paramétrées en Calcul de Variations, Bull. Soc. Mat. France 101 (1973), 129-184. | Numdam | MR | Zbl
- ,[4] “Analyse fonctionelle - Théorie et applications”, Masson, Paris, 1983. | MR | Zbl
,[5] Conditional expectations and weak and strong compactness in spaces of Bochner integrable functions, J. Multivariate Anal. 9 (1979), 420-427. | MR | Zbl
- ,[6] Semi-Groups of Operators and Approximation", Springer, Berlin, 1967. | MR | Zbl
- , "
[7] Quelques aperçus des résultats de compacité dans
[8] Kolmogorov and Riesz type criteria of compactness in Köthe spaces of vector valued functions, J. Math. Anal. Appl. 149 (1990), 96-113. | MR | Zbl
- ,[9] Weak convergence using Young measures, Funct. Approx. Comment. Math. 26 (1998), 7-17. | MR | Zbl
- ,[10] “Probabilities and Potential", North-Holland, Amsterdam, 1979. | MR | Zbl
- ,[11] “Linear Operators. Part I", Interscience Publishers, New York, 1958. | MR | Zbl
- ,[12] “Functional Analysis. Theory and Applications", Holt, Rinehart and Winston, New York, 1965. | MR | Zbl
,[13] “Measure Theory and Fine Properties of Functions", Studies in Advanced Mathematics, CRC Press, Boca Raton, Florida, 1992. | MR | Zbl
- ,[14] “Equations différentielles opérationelles et problèmes aux limites", Springer, Berlin, 1961. | Zbl
,[15] “Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires", Dunod, Gauthiers-Villars, Paris, 1969. | MR | Zbl
,[16] “Non Homogeneous Boundary Value problems and Applications”, volume I, Springer, New York-Heidelberg, 1972. | MR | Zbl
- ,[17] Solutions of the two phase Stefan problem with the Gibbs-Thomson law for the melting temperature, Euro. J. Appl. Math. 1 (1990), 101-111. | MR | Zbl
,[18] The Stefan problem with surface tension as a limit of phase field model, Differential Equations 29 (1993), 395-404. | MR | Zbl
- ,[19] An Optimal Compactness Theorem and Application to Elliptic-Parabolic Systems, Appl. Math. Lett. 14 (2001), 303-306. | MR | Zbl
- ,[20] Compactness results for evolution equations, Istit. Lombardo Accad. Sci. Lett. Rend. A. 135 (2002), 1-11. | MR
,[21] Convergence in measure. Local formulation of the Fréchet criterion, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 423-428. | MR | Zbl
- ,
[22] Convergence in measure
[23] Compactness Properties for Families of Quasistationary Solutions of some Evolution Equations, to appear in Trans. of A.M.S. | MR | Zbl
,
[24] Compact Sets in the space
[25] Navier-Stokes equations and nonlinear functional analysis. Second edition, CBMS-NSF Regional Conference Series in Applied Mathematics 66. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. | MR | Zbl
,[26] Young Measures in Methods of Nonconvex Analysis, Ed. A. Cellina, Lecture Notes in Math. 1446 (Springer-Verlag, Berlin) (1990), 152-188. | MR | Zbl
,[27] “Models of Phase Transitions", Birkhäuser, Boston, 1996. | MR | Zbl
,