The domain of the Ornstein-Uhlenbeck operator on an Lp-space with invariant measure
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 2, pp. 471-485.

We show that the domain of the Ornstein-Uhlenbeck operator on Lp (N,μdx) equals the weighted Sobolev space W2,p(N,μdx), where μdx is the corresponding invariant measure. Our approach relies on the operator sum method, namely the commutative and the non commutative Dore-Venni theorems.

Classification : 35J15, 35K10, 47A55, 47D06
@article{ASNSP_2002_5_1_2_471_0,
     author = {Metafune, Giorgio and Pr\"uss, Jan and Rhandi, Abdelaziz and Schnaubelt, Roland},
     title = {The domain of the {Ornstein-Uhlenbeck} operator on an $L^p$-space with invariant measure},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {471--485},
     publisher = {Scuola normale superiore},
     volume = {Ser. 5, 1},
     number = {2},
     year = {2002},
     mrnumber = {1991148},
     zbl = {1170.35375},
     language = {en},
     url = {https://www.numdam.org/item/ASNSP_2002_5_1_2_471_0/}
}
TY  - JOUR
AU  - Metafune, Giorgio
AU  - Prüss, Jan
AU  - Rhandi, Abdelaziz
AU  - Schnaubelt, Roland
TI  - The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2002
SP  - 471
EP  - 485
VL  - 1
IS  - 2
PB  - Scuola normale superiore
UR  - https://www.numdam.org/item/ASNSP_2002_5_1_2_471_0/
LA  - en
ID  - ASNSP_2002_5_1_2_471_0
ER  - 
%0 Journal Article
%A Metafune, Giorgio
%A Prüss, Jan
%A Rhandi, Abdelaziz
%A Schnaubelt, Roland
%T The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2002
%P 471-485
%V 1
%N 2
%I Scuola normale superiore
%U https://www.numdam.org/item/ASNSP_2002_5_1_2_471_0/
%G en
%F ASNSP_2002_5_1_2_471_0
Metafune, Giorgio; Prüss, Jan; Rhandi, Abdelaziz; Schnaubelt, Roland. The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 2, pp. 471-485. https://www.numdam.org/item/ASNSP_2002_5_1_2_471_0/

[1] P. Cannarsa - V. Vespri, Generation of analytic semigroups in the Lp topology by elliptic operators in n, Israel J. Math. 61 (1988), 235-255. | MR | Zbl

[2] A. Chojnowska-Michalik - B. Goldys, Generalized symmetric Ornstein-Uhlenbeck operators in Lp: Littlewood-Paley-Stein inequalities and domains of generators, to appear in J. Funct. Anal. | MR

[3] A. Chojnowska-Michalik - B. Goldys, Symmetric Ornstein-Uhlenbeck generators: Characterizations and identification of domains, preprint.

[4] P. Clément - J. Prüss, Completely positive measures and Feller semigroups, Math. Ann. 287 (1990), 73-105. | MR | Zbl

[5] R. R. Coifman - G. Weiss, Transference Methods in Analysis, Amer. Math. Society, 1977. | MR | Zbl

[6] G. Da Prato, Characterization of the domain of an elliptic operator of infinitely many variables in L2(μ) spaces, Rend. Mat. Acc. Lincei 8 (1997), 101-105. | MR | Zbl

[7] G. Da Prato, Perturbation of Ornstein-Uhlenbeck semigroups, Rend. Istit. Mat. Univ. Trieste 28 (1997), 101-126. | MR | Zbl

[8] G. Da Prato - A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal. 131 (1995), 94-114. | MR | Zbl

[9] G. Da Prato - B. Goldys, On perturbations of symmetric Gaussian diffusions, Stochastic Anal. Appl. 17 (1999), 369-382. | MR | Zbl

[10] G. Da Prato - V. Vespri, Maximal Lp regularity for elliptic equations with unbounded coefficients, to appear in Nonlinear Analysis TMA. | Zbl

[11] G. Da Prato - J. Zabczyk, “Stochastic Equations in Infinite Dimensions”, Cambridge University Press, 1992. | MR | Zbl

[12] G. Da Prato - J. Zabczyk, Regular densities of invariant measures in Hilbert spaces, J. Funct. Anal. 130 (1995), 427-449. | MR | Zbl

[13] G. Dore - A. Venni, On the closedness of the sum of two closed operators, Math. Z. 196 (1987), 189-201. | MR | Zbl

[14] A. Lunardi, On the Ornstein-Uhlenbeck operator in L2 spaces with respect to invariant measures, Trans. Amer. Math. Soc. 349 (1997), 155-169. | MR | Zbl

[15] G. Metafune, Lp-spectrum of Ornstein-Uhlenbeck operators, Ann. Sc. Norm. Sup. Pisa 30 (2001), 97-124. | Numdam | MR | Zbl

[16] G. Metafune - D. Pallara - E. Priola, Spectrum of Ornstein-Uhlenbeck operators in Lp spaces with respect to invariant measures, preprint. | Zbl

[17] S. Monniaux - J. Prüss, A theorem of the Dore-Venni type for noncommuting operators, Trans. Amer. Math. Soc. 349 (1997), 4787-4814. | MR | Zbl

[18] J. Prüss - H. Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990), 429-452. | MR | Zbl

[19] J. Prüss - H. Sohr, Imaginary powers of elliptic second order differential operators in Lp-space, Hiroshima Math. J. 23 (1993), 161-192. | MR | Zbl

[20] I. Shigekawa, Sobolev spaces over the Wiener space based on an Ornstein-Uhlenbeck operator, J. Math. Kyoto Univ. 32 (1992), 731-748. | MR | Zbl