@article{ASNSP_1975_4_2_4_497_0, author = {Caffarelli, Luis A.}, title = {Surfaces of minimum capacity for a knot}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {497--505}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 2}, number = {4}, year = {1975}, mrnumber = {393523}, zbl = {0313.31014}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1975_4_2_4_497_0/} }
TY - JOUR AU - Caffarelli, Luis A. TI - Surfaces of minimum capacity for a knot JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1975 SP - 497 EP - 505 VL - 2 IS - 4 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1975_4_2_4_497_0/ LA - en ID - ASNSP_1975_4_2_4_497_0 ER -
Caffarelli, Luis A. Surfaces of minimum capacity for a knot. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 2 (1975) no. 4, pp. 497-505. http://www.numdam.org/item/ASNSP_1975_4_2_4_497_0/
[1] Methods of Mathematical Physics, vol. II.
- ,[2] Surfaces of Minimum Capacity, Proc. Nat. Acad. Sci., 26 (1940), 664-667. | MR | Zbl
,[3] Lectures on Multiple Valued Functions in Space, Univ. Calif. Publ. Math., N. S. I (1951), 281-340. | MR | Zbl
,[4] Kellogg's Uniqueness Theorem and Applications, Courant Anniversary Volume (1948), 95-104. | MR | Zbl
,[5] A Quick Trip through ffinot Theory, Topology of 3-Manifolds, Proc. Univ. of Georgia (1962).
,[6] Homotopy Theory, Academic Press (1959). | MR | Zbl
,[7] Foundations of Potential Theory, Berlin (1929). | JFM
,