A simple proof of the mean fourth power estimate for ζ(1 2+it) and L(1 2+it,χ)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 1 (1974) no. 1-2, pp. 81-97.
@article{ASNSP_1974_4_1_1-2_81_0,
     author = {Ramachandra, K.},
     title = {A simple proof of the mean fourth power estimate for $\zeta (\frac{1}{2} + it)$ and $L (\frac{1}{2} + it, \chi )$},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {81--97},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 1},
     number = {1-2},
     year = {1974},
     zbl = {0305.10036},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1974_4_1_1-2_81_0/}
}
TY  - JOUR
AU  - Ramachandra, K.
TI  - A simple proof of the mean fourth power estimate for $\zeta (\frac{1}{2} + it)$ and $L (\frac{1}{2} + it, \chi )$
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1974
SP  - 81
EP  - 97
VL  - 1
IS  - 1-2
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_1974_4_1_1-2_81_0/
LA  - en
ID  - ASNSP_1974_4_1_1-2_81_0
ER  - 
%0 Journal Article
%A Ramachandra, K.
%T A simple proof of the mean fourth power estimate for $\zeta (\frac{1}{2} + it)$ and $L (\frac{1}{2} + it, \chi )$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1974
%P 81-97
%V 1
%N 1-2
%I Scuola normale superiore
%U http://www.numdam.org/item/ASNSP_1974_4_1_1-2_81_0/
%G en
%F ASNSP_1974_4_1_1-2_81_0
Ramachandra, K. A simple proof of the mean fourth power estimate for $\zeta (\frac{1}{2} + it)$ and $L (\frac{1}{2} + it, \chi )$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 1 (1974) no. 1-2, pp. 81-97. http://www.numdam.org/item/ASNSP_1974_4_1_1-2_81_0/

[1] K. Chandrasekharan - R. Narasimhan, The approximate functional equation for a class of zeta-functions, Math. Ann., 152 (1963), pp. 30-64. | EuDML | MR | Zbl

[2] P.X. Gallagher, Bombieri's mean value theorem, Mathematika, 15 (1968), pp. 1-6. | MR | Zbl

[3] M.N. Huxley, On the difference between consecutive primes, Invent. Math., 15 (1972), pp. 164-170. | EuDML | MR | Zbl

[4] M.N. Huxley, The Distribution of Prime Numbers, Oxford Mathematical Monographs, Oxford (1972). | MR | Zbl

[5] M. Jutila, On a density theorem of H. L. Montgomery for L-functions, Annales Academiae Scientiarum Fennicae, Series A, I Mathematica, 520 (1972), pp. 1-12. | MR | Zbl

[6] H.L. Montgomery, Mean and large values of Dirichlet polynomials, Invent. Math., 8 (1969), pp. 334-345. | EuDML | MR | Zbl

[7] H.L. Montgomery, Zeros of L-functions, Invent. Math., 8 (1969), pp. 346-354. | EuDML | MR | Zbl

[8] H.L. Montgomery, Topics in Multiplicative Number Theory, Lecture notes in Mathematics, Springer Verlag (1971). | MR | Zbl

[9] R. Ramachandra, On a discrete mean value theorem for ζ(s), Jour. Indian. Math. Soc., 36 (1972), pp. 307-316. | Zbl

[10] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford (1951). | MR | Zbl