[Dimères et systèmes intégrables de type cluster]
Au modèle des dimères sur un graphe biparti sur le tore, on associe un système intégrable quantique, qu'on appelle système intégrable de type cluster.
L’espace des phases classique contient, comme ouvert dense, l’espace des modules
We show that the dimer model on a bipartite graph
Keywords: integrable systems, dimers, cluster algebras
Mot clés : systèmes intégrables, dimères, algebre amassée
@article{ASENS_2013_4_46_5_747_0, author = {Goncharov, Alexander B. and Kenyon, Richard}, title = {Dimers and cluster integrable systems}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {747--813}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 46}, number = {5}, year = {2013}, doi = {10.24033/asens.2201}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2201/} }
TY - JOUR AU - Goncharov, Alexander B. AU - Kenyon, Richard TI - Dimers and cluster integrable systems JO - Annales scientifiques de l'École Normale Supérieure PY - 2013 SP - 747 EP - 813 VL - 46 IS - 5 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2201/ DO - 10.24033/asens.2201 LA - en ID - ASENS_2013_4_46_5_747_0 ER -
%0 Journal Article %A Goncharov, Alexander B. %A Kenyon, Richard %T Dimers and cluster integrable systems %J Annales scientifiques de l'École Normale Supérieure %D 2013 %P 747-813 %V 46 %N 5 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2201/ %R 10.24033/asens.2201 %G en %F ASENS_2013_4_46_5_747_0
Goncharov, Alexander B.; Kenyon, Richard. Dimers and cluster integrable systems. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 5, pp. 747-813. doi : 10.24033/asens.2201. https://www.numdam.org/articles/10.24033/asens.2201/
[1] Exactly solved models in statistical mechanics, Academic Press Inc., 1989. | MR
,[2] Quantum cluster algebras, preprint arXiv:math/0404446. | MR
& ,[3] Discrete differential geometry, Graduate Studies in Math. 98, Amer. Math. Soc., 2008. | MR
& ,[4] The cube recurrence, Electron. J. Combin. 11 (2004), Research Paper 73. | MR
& ,[5] A complementation theorem for perfect matchings of graphs having a cellular completion, J. Combin. Theory Ser. A 81 (1998), 34-68. | MR
,[6] Réseaux électriques planaires. I, Comment. Math. Helv. 69 (1994), 351-374. | MR
,[7] Circular planar graphs and resistor networks, Linear Algebra Appl. 283 (1998), 115-150. | MR
, & ,
[8]
[9] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. I.H.É.S. 103 (2006), 1-211. | Numdam | MR
& ,[10] Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009), 865-930. | Numdam | MR
& ,[11] The quantum dilogarithm and representations of quantum cluster varieties, Invent. Math. 175 (2009), 223-286. | MR
& ,[12] Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529. | MR
& ,[13] The Laurent phenomenon, Adv. in Appl. Math. 28 (2002), 119-144. | MR
& ,[14] Introduction to toric varieties, Annals of Math. Studies 131, Princeton Univ. Press, 1993. | MR
,[15] Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs 167, Amer. Math. Soc., 2010. | MR
, & ,[16] Poisson geometry of directed networks in an annulus, preprint arXiv:0901.0020. | MR
, & ,[17] A. B. Goncharov & R. W. Kenyon, in preparation.
[18] Ueber die Vieltheiligkeit der ebenen algebraischen Curven, Math. Ann. 10 (1876), 189-198. | MR
,[19] The multidimensional cube recurrence, Adv. Math. 223 (2010), 1107-1136. | MR
& ,[20] Discrete analogue of a generalized Toda equation, J. Phys. Soc. Japan 50 (1981), 3785-3791. | MR
,[21] Dimer models and the special McKay correspondence, preprint arXiv:0905.0059.
& ,[22] Dimer statistics and phase transitions, J. Mathematical Phys. 4 (1963), 287-293. | MR
,[23] Equivalence of triangles and stars in conducting networks, Electrical World and Engineer 34 (1989), 413-414.
,[24] The Laplacian and Dirac operators on critical planar graphs, Invent. Math. 150 (2002), 409-439. | MR
,[25] Spanning forests and the vector bundle Laplacian, Ann. Probab. 39 (2011), 1983-2017. | MR
,[26] Planar dimers and Harnack curves, Duke Math. J. 131 (2006), 499-524. | MR
& ,[27] Trees and matchings, Electron. J. Combin. 7 (2000), Research Paper 25. | MR
, & ,
[28] Vacuum curves and classical integrable systems in
[29] T-systems and Y-systems in integrable systems, preprint arXiv:1010.1344.
, & ,[30] Matching theory, North-Holland Mathematics Studies 121, North-Holland Publishing Co., 1986. | MR
& ,[31] Real algebraic curves, the moment map and amoebas, Ann. of Math. 151 (2000), 309-326. | MR
,[32] Amoebas of maximal area, Int. Math. Res. Not. 2001 (2001), 441-451. | MR
& ,[33] On Hirota's difference equations, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), 9-12. | MR
,[34] Quantization of integrable systems and four dimensional gauge theories, in XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, 265-289. | MR
& ,[35] Total positivity, Grassmannians and networks, preprint arXiv:math/0609764.
,[36] Perfect matchings and the octahedron recurrence, J. Algebraic Combin. 25 (2007), 309-348. | MR
,[37] From dominos to hexagons, preprint arXiv:math/0405482.
,Cité par Sources :