[Classes d'homotopie algébrique de fractions rationnelles]
Soit
Let
Keywords: naive homotopy classes, rational functions, projective line, group completion
Mot clés : classes d'homotopie naïve, fractions rationnelles, droite projective, complétion en groupe
@article{ASENS_2012_4_45_4_511_0, author = {Cazanave, Christophe}, title = {Algebraic homotopy classes of rational functions}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {511--534}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 45}, number = {4}, year = {2012}, doi = {10.24033/asens.2172}, mrnumber = {3059240}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2172/} }
TY - JOUR AU - Cazanave, Christophe TI - Algebraic homotopy classes of rational functions JO - Annales scientifiques de l'École Normale Supérieure PY - 2012 SP - 511 EP - 534 VL - 45 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2172/ DO - 10.24033/asens.2172 LA - en ID - ASENS_2012_4_45_4_511_0 ER -
%0 Journal Article %A Cazanave, Christophe %T Algebraic homotopy classes of rational functions %J Annales scientifiques de l'École Normale Supérieure %D 2012 %P 511-534 %V 45 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2172/ %R 10.24033/asens.2172 %G en %F ASENS_2012_4_45_4_511_0
Cazanave, Christophe. Algebraic homotopy classes of rational functions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 4, pp. 511-534. doi : 10.24033/asens.2172. https://www.numdam.org/articles/10.24033/asens.2172/
[1] Éléments de mathématique. Algèbre, chapitre IV: Polynômes et fractions rationnelles, Hermann, Paris, 1950 ; réédition Springer, 2007. | Zbl
,[2] Classes d'homotopie de fractions rationnelles, C. R. Math. Acad. Sci. Paris 346 (2008), 129-133. | MR | Zbl
,[3] Théorie homotopique des schémas d'Atiyah-Hitchin, thèse de doctorat, Université Paris 13, 2009.
,
[4] The
[5] Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser, 1994. | MR | Zbl
, & ,
[6]
[7] Serre's problem on projective modules, Springer Monographs in Math., Springer, 2006. | MR | Zbl
,[8] Symmetric bilinear forms, Ergebn. Math. Grenzg. 73, Springer, 1973. | MR | Zbl
& ,[9] Théorie homotopique des schémas, Astérisque 256 (1999). | Numdam | Zbl
,
[10] An introduction to
[11]
[12]
[13] Homotopical algebra, Lecture Notes in Math., No. 43, Springer, 1967. | MR | Zbl
,- Making the motivic group structure on the endomorphisms of the projective line explicit, Advances in Mathematics, Volume 461 (2025), p. 110080 | DOI:10.1016/j.aim.2024.110080
- Motivic stable cohomotopy and unimodular rows, Advances in Mathematics, Volume 436 (2024), p. 109415 | DOI:10.1016/j.aim.2023.109415
- Quadratic enrichment of the logarithmic derivative of the zeta function, Transactions of the American Mathematical Society, Series B, Volume 11 (2024) no. 33, p. 1183 | DOI:10.1090/btran/201
- Weight structures and formality, arXiv (2024) | DOI:10.48550/arxiv.2406.19142 | arXiv:2406.19142
- Bézoutians and the 𝔸1-degree, Algebra Number Theory, Volume 17 (2023) no. 11, p. 1985 | DOI:10.2140/ant.2023.17.1985
- Localization and nilpotent spaces in -homotopy theory, Compositio Mathematica, Volume 158 (2022) no. 3, p. 654 | DOI:10.1112/s0010437x22007321
- Cancellation of vector bundles of rank 3 with trivial Chern classes on smooth affine fourfolds, Journal of Pure and Applied Algebra, Volume 226 (2022) no. 9, p. 107038 | DOI:10.1016/j.jpaa.2022.107038
- An arithmetic count of the lines on a smooth cubic surface, Compositio Mathematica, Volume 157 (2021) no. 4, p. 677 | DOI:10.1112/s0010437x20007691
- An Introduction to
-Enumerative Geometry, Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects, Volume 2292 (2021), p. 11 | DOI:10.1007/978-3-030-78977-0_2 - Applications to
-enumerative geometry of the -degree, Research in the Mathematical Sciences, Volume 8 (2021) no. 2 | DOI:10.1007/s40687-021-00255-6 - A classical proof that the algebraic homotopy class of a rational function is the residue pairing, Linear Algebra and its Applications, Volume 595 (2020), p. 157 | DOI:10.1016/j.laa.2019.12.041
- The class of Eisenbud–Khimshiashvili–Levine is the local A1-Brouwer degree, Duke Mathematical Journal, Volume 168 (2019) no. 3 | DOI:10.1215/00127094-2018-0046
- Affine representability results in 𝔸1–homotopy theory, II : Principal bundles and homogeneous spaces, Geometry Topology, Volume 22 (2018) no. 2, p. 1181 | DOI:10.2140/gt.2018.22.1181
- A primer for unstable motivic homotopy theory, Surveys on Recent Developments in Algebraic Geometry, Volume 95 (2017), p. 305 | DOI:10.1090/pspum/095/01637
- Motivic homological stability for configuration spaces of the line, Bulletin of the London Mathematical Society, Volume 48 (2016) no. 4, p. 601 | DOI:10.1112/blms/bdw032
Cité par 15 documents. Sources : Crossref, NASA ADS