[Régularité du mouvement d'un solide plongé dans un fluide parfait incompressible]
On considère le mouvement d’un corps solide plongé dans un fluide parfait incompressible qui occupe un domaine borné de
We consider the motion of a rigid body immersed in an incompressible perfect fluid which occupies a three-dimensional bounded domain. For such a system the Cauchy problem is well-posed locally in time if the initial velocity of the fluid is in the Hölder space
Keywords: fluid-solid interaction, regularity properties, perfect incompressible fluid
Mot clés : interaction fluide-solide, propriétés de régularité, fluide parfait incompressible
@article{ASENS_2012_4_45_1_1_0, author = {Glass, Olivier and Sueur, Franck and Takahashi, Tak\'eo}, title = {Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1--51}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 45}, number = {1}, year = {2012}, doi = {10.24033/asens.2159}, mrnumber = {2961786}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2159/} }
TY - JOUR AU - Glass, Olivier AU - Sueur, Franck AU - Takahashi, Takéo TI - Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid JO - Annales scientifiques de l'École Normale Supérieure PY - 2012 SP - 1 EP - 51 VL - 45 IS - 1 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2159/ DO - 10.24033/asens.2159 LA - en ID - ASENS_2012_4_45_1_1_0 ER -
%0 Journal Article %A Glass, Olivier %A Sueur, Franck %A Takahashi, Takéo %T Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid %J Annales scientifiques de l'École Normale Supérieure %D 2012 %P 1-51 %V 45 %N 1 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2159/ %R 10.24033/asens.2159 %G en %F ASENS_2012_4_45_1_1_0
Glass, Olivier; Sueur, Franck; Takahashi, Takéo. Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 1, pp. 1-51. doi : 10.24033/asens.2159. https://www.numdam.org/articles/10.24033/asens.2159/
[1] Complex analysis, third éd., McGraw-Hill Book Co., 1978. | MR | Zbl
,
[2] Loss of smoothness and energy conserving rough weak solutions for the
[3] Remarks on the Euler equation, J. Functional Analysis 15 (1974), 341-363. | MR | Zbl
& ,[4] Sur le mouvement des particules d'un fluide parfait incompressible bidimensionnel, Invent. Math. 103 (1991), 599-629. | MR | Zbl
,[5] Régularité de la trajectoire des particules d'un fluide parfait incompressible remplissant l'espace, J. Math. Pures Appl. 71 (1992), 407-417. | MR | Zbl
,[6] Fluides parfaits incompressibles, Astérisque 230 (1995). | Numdam | MR | Zbl
,[7] Precise regularity results for the Euler equations, J. Math. Anal. Appl. 282 (2003), 177-200. | MR | Zbl
,[8] Système d'Euler incompressible et régularité microlocale analytique, in Séminaire sur les Équations aux Dérivées Partielles, 1992-1993, École Polytech., 1993, exp. no 20. | MR | Zbl
,[9] Système d'Euler incompressible et régularité microlocale analytique, Ann. Inst. Fourier (Grenoble) 44 (1994), 1449-1475. | Numdam | MR | Zbl
,[10] Electromagnetic theory and computation: a topological approach, Mathematical Sciences Research Institute Publications 48, Cambridge Univ. Press, 2004. | MR | Zbl
& ,[11] Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid, J. Funct. Anal. 259 (2010), 2856-2885. | MR | Zbl
, & ,[12] On the smoothness of trajectories in incompressible perfect fluids, in Nonlinear wave equations (Providence, RI, 1998), Contemp. Math. 263, Amer. Math. Soc., 2000, 109-130. | MR | Zbl
,[13] Two manuscripts left by late Professor Tosio Kato in his personal computer, Sūrikaisekikenkyūsho Kōkyūroku 1234 (2001), 260-274. | MR
,[14] Transport and instability for perfect fluids, Math. Ann. 323 (2002), 491-523. | MR | Zbl
,[15] Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid, M2AN Math. Model. Numer. Anal. 39 (2005), 79-108. | Numdam | MR | Zbl
, & ,[16] On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), 139-165. | Numdam | MR | Zbl
, & ,[17] Smooth solutions for the motion of a ball in an incompressible perfect fluid, J. Funct. Anal. 256 (2009), 1618-1641. | MR | Zbl
& ,[18] Équation d'Euler et holomorphies à faible régularité spatiale, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 175-180. | MR | Zbl
,
[19] Solutions
[20] Structures holomorphes à faible régularité spatiale en mécanique des fluides, J. Math. Pures Appl. 74 (1995), 95-104. | MR | Zbl
,[21] Evolution of singularities, generalized Liapunov function and generalized integral for an ideal incompressible fluid, Amer. J. Math. 119 (1997), 579-608. | MR | Zbl
,[22] Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30, Princeton Univ. Press, 1970. | MR | Zbl
,[23] On quasianalytic local rings, Expo. Math. 26 (2008), 1-23. | MR | Zbl
,Cité par Sources :