[Variétés de Fano de degré dix et sextiques d'Eisenbud-Popescu-Walter]
O’Grady a démontré que certaines sextiques spéciales dans
O’Grady showed that certain special sextics in
Keywords: holomorphic symplectic manifold, Fano manifold, grassmannian, Hilbert scheme, conic, double cover, lagrangian surface, integrable system
Mot clés : variété symplectique holomorphe, variété de Fano, grassmannienne, schéma de Hilbert, conique, revêtement double, surface lagrangienne, système intégrable
@article{ASENS_2011_4_44_3_393_0, author = {Iliev, Atanas and Manivel, Laurent}, title = {Fano manifolds of degree ten and {EPW} sextics}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {393--426}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 44}, number = {3}, year = {2011}, doi = {10.24033/asens.2146}, mrnumber = {2839455}, zbl = {1258.14050}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2146/} }
TY - JOUR AU - Iliev, Atanas AU - Manivel, Laurent TI - Fano manifolds of degree ten and EPW sextics JO - Annales scientifiques de l'École Normale Supérieure PY - 2011 SP - 393 EP - 426 VL - 44 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2146/ DO - 10.24033/asens.2146 LA - en ID - ASENS_2011_4_44_3_393_0 ER -
%0 Journal Article %A Iliev, Atanas %A Manivel, Laurent %T Fano manifolds of degree ten and EPW sextics %J Annales scientifiques de l'École Normale Supérieure %D 2011 %P 393-426 %V 44 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2146/ %R 10.24033/asens.2146 %G en %F ASENS_2011_4_44_3_393_0
Iliev, Atanas; Manivel, Laurent. Fano manifolds of degree ten and EPW sextics. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 44 (2011) no. 3, pp. 393-426. doi : 10.24033/asens.2146. https://www.numdam.org/articles/10.24033/asens.2146/
[1] A note on nonvanishing and applications, Duke Math. J. 72 (1993), 739-755. | MR | Zbl
& ,[2] Geometry of algebraic curves. Vol. I, Grund. Math. Wiss. 267, Springer, 1985. | MR | Zbl
, , & ,
[3] Fano threefolds and
[4] On the period map for prime Fano threefolds of degree ten, preprint arXiv:0812.3670, to appear in J. Algebraic Geom. | MR | Zbl
, & ,[5] Hyper-Kähler fourfolds and Grassmann geometry, J. reine angew. Math. 649 (2010), 63-87. | MR | Zbl
& ,[6] Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles, in Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math. 1620, Springer, 1996, 1-119. | MR | Zbl
& ,[7] Enriques surfaces and other non-Pfaffian subcanonical subschemes of codimension 3, Comm. Algebra 28 (2000), 5629-5653. | MR | Zbl
, & ,
[8] Fano varieties of genus
[9] Prime Fano threefolds and integrable systems, Math. Ann. 339 (2007), 937-955. | MR | Zbl
& ,[10] Cubic hypersurfaces and integrable systems, Amer. J. Math. 130 (2008), 1445-1475. | MR | Zbl
& ,[11] Symplectic structures on moduli spaces of sheaves via the Atiyah class, J. Geom. Phys. 59 (2009), 843-860. | MR | Zbl
& ,
[12] Fano threefolds of genus
[13] An integrable system of
[14] Integrable systems from intermediate Jacobians of fivefolds, preprint, 2009.
,
[15] Curves,
[16] Moduli of vector bundles on
[17] Involutions and linear systems on holomorphic symplectic manifolds, Geom. Funct. Anal. 15 (2005), 1223-1274. | Zbl
,[18] Irreducible symplectic 4-folds and Eisenbud-Popescu-Walter sextics, Duke Math. J. 134 (2006), 99-137. | Zbl
,[19] Dual double EPW-sextics and their periods, Pure Appl. Math. Q. 4 (2008), 427-468. | MR | Zbl
,
[20] Irreducible symplectic 4-folds numerically equivalent to
[21] Deformations of algebraic schemes, Grund. Math. Wiss. 334, Springer, 2006. | MR | Zbl
,Cité par Sources :