[Géométrie birationnelle explicite des variétés de type général de dimension 3, I]
Soit
Let
Keywords: 3-folds, plurigenus
Mot clés : variétés de dimension 3, plurigenre
@article{ASENS_2010_4_43_3_365_0, author = {Chen, Jungkai A. and Chen, Meng}, title = {Explicit birational geometry of threefolds of general type, {I}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {365--394}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 43}, number = {3}, year = {2010}, doi = {10.24033/asens.2124}, mrnumber = {2667020}, zbl = {1194.14060}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2124/} }
TY - JOUR AU - Chen, Jungkai A. AU - Chen, Meng TI - Explicit birational geometry of threefolds of general type, I JO - Annales scientifiques de l'École Normale Supérieure PY - 2010 SP - 365 EP - 394 VL - 43 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2124/ DO - 10.24033/asens.2124 LA - en ID - ASENS_2010_4_43_3_365_0 ER -
%0 Journal Article %A Chen, Jungkai A. %A Chen, Meng %T Explicit birational geometry of threefolds of general type, I %J Annales scientifiques de l'École Normale Supérieure %D 2010 %P 365-394 %V 43 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2124/ %R 10.24033/asens.2124 %G en %F ASENS_2010_4_43_3_365_0
Chen, Jungkai A.; Chen, Meng. Explicit birational geometry of threefolds of general type, I. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 3, pp. 365-394. doi : 10.24033/asens.2124. https://www.numdam.org/articles/10.24033/asens.2124/
[1] Complex algebraic surfaces, London Mathematical Society Lecture Note Series 68, Cambridge Univ. Press, 1983. | MR | Zbl
,[2] Canonical models of surfaces of general type, Publ. Math. I.H.É.S. 42 (1973), 171-219. | Numdam | MR | Zbl
,
[3] The canonical volume of 3-folds of general type with
[4] The 5-canonical system on 3-folds of general type, J. reine angew. Math. 603 (2007), 165-181. | MR | Zbl
, & ,[5] Pluricanonical systems on irregular 3-folds of general type, Math. Z. 255 (2007), 343-355. | MR | Zbl
& ,
[6] Canonical stability of 3-folds of general type with
[7] On the
[8] A sharp lower bound for the canonical volume of 3-folds of general type, Math. Ann. 337 (2007), 887-908. | MR | Zbl
,[9] Complex projective 3-fold with non-negative canonical Euler-Poincaré characteristic, Comm. Anal. Geom. 16 (2008), 159-182. | MR | Zbl
& ,[10] Global generation of pluricanonical and adjoint linear series on smooth projective threefolds, J. Amer. Math. Soc. 6 (1993), 875-903. | MR | Zbl
& ,
[11] Contributions to Riemann-Roch on projective
[12] Inverting Reid's exact plurigenera formula, Math. Ann. 284 (1989), 617-629. | MR | Zbl
,[13] Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), 1-25. | MR | Zbl
& ,[14] Working with weighted complete intersections, in Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser. 281, Cambridge Univ. Press, 2000, 101-173. | MR | Zbl
,[15] A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann. 261 (1982), 43-46. | MR | Zbl
,
[16] On the plurigenera of minimal algebraic
[17] Introduction to the minimal model problem, in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math. 10, North-Holland, 1987, 283-360. | MR | Zbl
, & ,[18] Higher direct images of dualizing sheaves. I, Ann. of Math. 123 (1986), 11-42. | MR | Zbl
,[19] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics 134, Cambridge Univ. Press, 1998. | MR | Zbl
& ,
[20] Global
[21] Canonical
[22] Minimal models of canonical
[23] Young person's guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46, Amer. Math. Soc., 1987, 345-414. | MR | Zbl
,[24] Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), 551-587. | MR | Zbl
,[25] Pluricanonical systems of projective varieties of general type. I, Osaka J. Math. 43 (2006), 967-995. | MR | Zbl
,[26] Vanishing theorems, J. reine angew. Math. 335 (1982), 1-8. | MR | Zbl
,- On explicit birational geometry for minimal n
‐folds of canonical dimension n−1 , Bulletin of the London Mathematical Society, Volume 56 (2024) no. 1, p. 319 | DOI:10.1112/blms.12934 - On the pluricanonical map and the canonical volume of projective 4-folds of general type, Communications in Algebra, Volume 52 (2024) no. 7, p. 2706 | DOI:10.1080/00927872.2024.2304597
- The isomorphism problem of projective schemes and related algorithmic problems, International Journal of Algebra and Computation, Volume 33 (2023) no. 05, p. 893 | DOI:10.1142/s021819672350039x
- Frobenius stable pluricanonical systems on threefolds of general type in positive characteristic, Algebra Number Theory, Volume 16 (2022) no. 10, p. 2339 | DOI:10.2140/ant.2022.16.2339
- On the anti-canonical geometry of weak ℚ-Fano threefolds II, Annales de l'Institut Fourier, Volume 70 (2021) no. 6, p. 2473 | DOI:10.5802/aif.3367
- On projective threefolds of general type with small positive geometric genus, Electronic Research Archive, Volume 29 (2021) no. 3, p. 2293 | DOI:10.3934/era.2020117
- On minimal 4-folds of general type with
, Electronic Research Archive, Volume 29 (2021) no. 5, p. 3309 | DOI:10.3934/era.2021040 - On quint‐canonical birationality of irregular threefolds, Proceedings of the London Mathematical Society, Volume 122 (2021) no. 2, p. 234 | DOI:10.1112/plms.12348
- K3 transitions and canonical 3-folds, Bulletin of the London Mathematical Society, Volume 50 (2018) no. 4, p. 583 | DOI:10.1112/blms.12157
- The canonical volume of minimal 3-folds of general type, International Journal of Mathematics, Volume 29 (2018) no. 03, p. 1850023 | DOI:10.1142/s0129167x18500234
- A snapshot of the Minimal Model Program, Surveys on Recent Developments in Algebraic Geometry, Volume 95 (2017), p. 1 | DOI:10.1090/pspum/095/01636
- On birational geometry of minimal threefolds with numerically trivial canonical divisors, Mathematische Annalen, Volume 365 (2016) no. 1-2, p. 49 | DOI:10.1007/s00208-015-1268-y
- Characterization of the 4-canonical birationality of algebraic threefolds, II, Mathematische Zeitschrift, Volume 283 (2016) no. 3-4, p. 659 | DOI:10.1007/s00209-016-1616-y
- Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs, Publications mathématiques de l'IHÉS, Volume 123 (2016) no. 1, p. 283 | DOI:10.1007/s10240-016-0080-x
- Geography of Irregular Gorenstein 3–folds, Canadian Journal of Mathematics, Volume 67 (2015) no. 3, p. 696 | DOI:10.4153/cjm-2014-033-0
- Explicit birational geometry of 3-folds and 4-folds of general type, III, Compositio Mathematica, Volume 151 (2015) no. 6, p. 1041 | DOI:10.1112/s0010437x14007817
- BIRATIONAL MAPS OF
-FOLDS, Taiwanese Journal of Mathematics, Volume 19 (2015) no. 6 | DOI:10.11650/tjm.19.2015.5337 - Finiteness of Calabi-Yau Quasismooth Weighted Complete Intersections, International Mathematics Research Notices (2014) | DOI:10.1093/imrn/rnu049
- The third and fourth pluricanonical maps of threefolds of general type, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 157 (2014) no. 2, p. 209 | DOI:10.1017/s0305004114000267
- Some birationality criteria on 3-folds with p g > 1, Science China Mathematics, Volume 57 (2014) no. 11, p. 2215 | DOI:10.1007/s11425-014-4890-3
- Weighted Hypersurfaces with Either Assigned Volume or Many Vanishing Plurigenera, Communications in Algebra, Volume 41 (2013) no. 10, p. 3745 | DOI:10.1080/00927872.2012.677079
- Factoring 3-fold flips and divisorial contractions to curves, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2011 (2011) no. 657 | DOI:10.1515/crelle.2011.056
- On anti-pluricanonical systems of ℚ-Fano 3-folds, Science China Mathematics, Volume 54 (2011) no. 8, p. 1547 | DOI:10.1007/s11425-010-4158-5
Cité par 23 documents. Sources : Crossref