[Ensembles amassés, quantification et dilogarithme]
Un ensemble amassé est une paire
A cluster ensemble is a pair
Keywords: cluster varieties, dilogarithm, quantization, Poisson structure, symplectic structure
Mot clés : variétés amassées, dilogarithm ?, quantification, structure de Poisson, structure symplectique
@article{ASENS_2009_4_42_6_865_0, author = {Fock, Vladimir V. and Goncharov, Alexander B.}, title = {Cluster ensembles, quantization and the dilogarithm}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {865--930}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 42}, number = {6}, year = {2009}, doi = {10.24033/asens.2112}, mrnumber = {2567745}, zbl = {1180.53081}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2112/} }
TY - JOUR AU - Fock, Vladimir V. AU - Goncharov, Alexander B. TI - Cluster ensembles, quantization and the dilogarithm JO - Annales scientifiques de l'École Normale Supérieure PY - 2009 SP - 865 EP - 930 VL - 42 IS - 6 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2112/ DO - 10.24033/asens.2112 LA - en ID - ASENS_2009_4_42_6_865_0 ER -
%0 Journal Article %A Fock, Vladimir V. %A Goncharov, Alexander B. %T Cluster ensembles, quantization and the dilogarithm %J Annales scientifiques de l'École Normale Supérieure %D 2009 %P 865-930 %V 42 %N 6 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2112/ %R 10.24033/asens.2112 %G en %F ASENS_2009_4_42_6_865_0
Fock, Vladimir V.; Goncharov, Alexander B. Cluster ensembles, quantization and the dilogarithm. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 6, pp. 865-930. doi : 10.24033/asens.2112. https://www.numdam.org/articles/10.24033/asens.2112/
[1] Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1-52. | MR | Zbl
, & ,[2] Quantum cluster algebras, Adv. Math. 195 (2005), 405-455. | MR | Zbl
& ,[3] Introductory notes on Richard Thompson's groups, Enseign. Math. 42 (1996), 215-256. | MR | Zbl
, & ,[4] Polytopal realizations of generalized associahedra, Canad. Math. Bull. 45 (2002), 537-566. | MR | Zbl
, & ,
[5] Cluster
[6] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1-211. | Numdam | MR | Zbl
& ,[7] Dual Teichmüller and lamination spaces, in Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys. 11, Eur. Math. Soc., Zürich, 2007, 647-684. | MR | Zbl
& ,[8] Cluster ensembles, quantization and the dilogarithm II: The intertwiner, Progress in Math. 269 (2009), 513-524. | MR | Zbl
& ,[9] The quantum dilogarithm and representations of quantum cluster varieties, Invent. Math. 175 (2009), 223-286. | MR | Zbl
& ,[10] Completions of cluster varieties, to appear.
& ,[11] Quantum Teichmüller spaces, Teoret. Mat. Fiz. 120 (1999), 511-528. | MR | Zbl
& ,[12] Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529 (electronic). | MR | Zbl
& ,[13] The Laurent phenomenon, Adv. in Appl. Math. 28 (2002), 119-144. | MR | Zbl
& ,[14] Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63-121. | MR | Zbl
& ,
[15]
[16] Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003), 899-934. | MR | Zbl
, & ,[17] Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), 291-311. | MR | Zbl
, & ,[18] Explicit construction of characteristic classes, in I. M. Gel'fand Seminar, Adv. Soviet Math. 16, Amer. Math. Soc., 1993, 169-210. | MR | Zbl
,[19] Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995), 197-318. | MR | Zbl
,
[20] Pentagon relation for the quantum dilogarithm and quantized
[21] Sur l'isomorphisme du groupe de Richard Thompson avec le groupe de Ptolémée, in Geometric Galois actions, 2, London Math. Soc. Lecture Note Ser. 243, Cambridge Univ. Press, 1997, 313-324. | MR | Zbl
,[22] Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys. 43 (1998), 105-115. | MR | Zbl
,
[23] Introduction to algebraic
[24] The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987), 299-339. | MR | Zbl
,[25] Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J. 4 (2004), 947-974. | MR | Zbl
& ,
[26]
Cité par Sources :