[Estimées de gradient locales, de fonctions
Dans la première partie de cet article, nous établissons des estimées locales de gradient pour les fonctions
In the first part of this paper, we prove local interior and boundary gradient estimates for
Keywords:
Mot clés : fonctions
@article{ASENS_2009_4_42_1_1_0, author = {Kotschwar, Brett and Ni, Lei}, title = {Local gradient estimates of $p$-harmonic functions, $1/H$-flow, and an entropy formula}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1--36}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 42}, number = {1}, year = {2009}, doi = {10.24033/asens.2089}, mrnumber = {2518892}, zbl = {1182.53060}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2089/} }
TY - JOUR AU - Kotschwar, Brett AU - Ni, Lei TI - Local gradient estimates of $p$-harmonic functions, $1/H$-flow, and an entropy formula JO - Annales scientifiques de l'École Normale Supérieure PY - 2009 SP - 1 EP - 36 VL - 42 IS - 1 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2089/ DO - 10.24033/asens.2089 LA - en ID - ASENS_2009_4_42_1_1_0 ER -
%0 Journal Article %A Kotschwar, Brett %A Ni, Lei %T Local gradient estimates of $p$-harmonic functions, $1/H$-flow, and an entropy formula %J Annales scientifiques de l'École Normale Supérieure %D 2009 %P 1-36 %V 42 %N 1 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2089/ %R 10.24033/asens.2089 %G en %F ASENS_2009_4_42_1_1_0
Kotschwar, Brett; Ni, Lei. Local gradient estimates of $p$-harmonic functions, $1/H$-flow, and an entropy formula. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 1, pp. 1-36. doi : 10.24033/asens.2089. https://www.numdam.org/articles/10.24033/asens.2089/
[1] Optimal heat kernel bounds under logarithmic Sobolev inequalities, ESAIM Probab. Statist. 1 (1995/97), 391-407. | Numdam | MR | Zbl
, & ,[2] On self-similar motions of a compressible fluid in a porous medium, Akad. Nauk SSSR. Prikl. Mat. Meh. 16 (1952), 679-698. | MR | Zbl
,[3] Geometric asymptotics and the logarithmic Sobolev inequality, Forum Math. 11 (1999), 105-137. | MR | Zbl
,[4] A functional form of the isoperimetric inequality for the Gaussian measure, J. Funct. Anal. 135 (1996), 39-49. | MR | Zbl
,[5] Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333-354. | MR | Zbl
& ,[6] The Ricci flow: techniques and applications. Part I: Geometric aspects, Mathematical Surveys and Monographs 135, Amer. Math. Soc., 2007. | MR | Zbl
, , , , , , , , & ,[7] The Ricci flow: techniques and applications. Part II: Analytic aspects, Mathematical Surveys and Monographs 144, Amer. Math. Soc., 2008. | MR | Zbl
, , , , , , , , & ,
[8] The optimal Euclidean
[9] Nonlinear diffusions, hypercontractivity and the optimal
[10] Logarithmic Sobolev inequalities on submanifolds of Euclidean space, J. reine angew. Math. 522 (2000), 105-118. | MR | Zbl
,
[11] Homogeneous diffusion in
[12] Régularité des solutions positives de l’équation parabolique
[13] Entropy and partial differential equations, lecture notes at UC Berkeley.
,[14] A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 1-20. | EuDML | Numdam | MR | Zbl
& ,[15] Entropy and reduced distance for Ricci expanders, J. Geom. Anal. 15 (2005), 49-62. | MR | Zbl
, & ,
[16] The general optimal
[17] Function theory on manifolds which possess a pole, Lecture Notes in Math. 699, Springer, 1979. | MR | Zbl
& ,[18] The formation of singularities in the Ricci flow, in Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995, 7-136. | MR | Zbl
,[19] A homotopy approach to solving the inverse mean curvature flow, Calc. Var. Partial Differential Equations 28 (2007), 249-273. | MR | Zbl
,[20] Volume growth, Green's functions, and parabolicity of ends, Duke Math. J. 97 (1999), 319-346. | MR | Zbl
,[21] The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), 353-437. | MR | Zbl
& ,[22] Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J. 32 (1983), 849-858. | MR | Zbl
,[23] Green's function, harmonic functions, and volume comparison, J. Differential Geom. 41 (1995), 277-318. | MR | Zbl
& ,[24] Complete manifolds with positive spectrum. II, J. Differential Geom. 62 (2002), 143-162. | MR | Zbl
& ,[25] On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201. | MR | Zbl
& ,
[26] The inverse mean curvature flow and
[27] The entropy formula for linear heat equation, J. Geom. Anal. 14 (2004), 87-100; addenda J. Geom. Anal. 14 (2004), 369-374. | MR | Zbl
,[28] The entropy formula for the Ricci flow and its geometric applications, preprint arXiv:math.DG/0211159. | Zbl
,[29] Smoothing and decay estimates for nonlinear diffusion equations. Equations of porous medium type, Oxford Lecture Series in Mathematics and its Applications 33, Oxford University Press, 2006. | MR | Zbl
,[30] Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. | MR | Zbl
,Cité par Sources :