Residue currents with prescribed annihilator ideals
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 40 (2007) no. 6, pp. 985-1007.
@article{ASENS_2007_4_40_6_985_0,
     author = {Andersson, Mats and Wulcan, Elizabeth},
     title = {Residue currents with prescribed annihilator ideals},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {985--1007},
     publisher = {Elsevier},
     volume = {Ser. 4, 40},
     number = {6},
     year = {2007},
     doi = {10.1016/j.ansens.2007.11.001},
     mrnumber = {2419855},
     zbl = {1143.32003},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.ansens.2007.11.001/}
}
TY  - JOUR
AU  - Andersson, Mats
AU  - Wulcan, Elizabeth
TI  - Residue currents with prescribed annihilator ideals
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2007
SP  - 985
EP  - 1007
VL  - 40
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.ansens.2007.11.001/
DO  - 10.1016/j.ansens.2007.11.001
LA  - en
ID  - ASENS_2007_4_40_6_985_0
ER  - 
%0 Journal Article
%A Andersson, Mats
%A Wulcan, Elizabeth
%T Residue currents with prescribed annihilator ideals
%J Annales scientifiques de l'École Normale Supérieure
%D 2007
%P 985-1007
%V 40
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.ansens.2007.11.001/
%R 10.1016/j.ansens.2007.11.001
%G en
%F ASENS_2007_4_40_6_985_0
Andersson, Mats; Wulcan, Elizabeth. Residue currents with prescribed annihilator ideals. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 40 (2007) no. 6, pp. 985-1007. doi : 10.1016/j.ansens.2007.11.001. https://www.numdam.org/articles/10.1016/j.ansens.2007.11.001/

[1] Andersson M., Residue currents and ideals of holomorphic functions, Bull. Sci. Math. 128 (2004) 481-512. | MR | Zbl

[2] Andersson M., Ideals of smooth functions and residue currents, J. Funct. Anal. 212 (1) (2004) 76-88. | MR | Zbl

[3] Andersson M., The membership problem for polynomial ideals in terms of residue currents, Ann. Inst. Fourier 56 (2006) 101-119. | Numdam | MR | Zbl

[4] Andersson M., Residue currents of holomorphic morphisms, J. reine angew. Math. 596 (2006) 215-234. | MR | Zbl

[5] Andersson M., Integral representation with weights II, division and interpolation formulas, Math. Z. 254 (2006) 315-332. | MR | Zbl

[6] Bayer D., Mumford D., What can be computed in algebraic geometry?, in: Computational Algebraic Geometry and Commutative Algebra, Cortona, 1991, Sympos. Math., vol. XXXIV, Cambridge Univ. Press, Cambridge, 1993, pp. 1-48. | MR | Zbl

[7] Bayer D., Peeva I., Sturmfels B., Monomial resolutions, Math. Res. Lett. 5 (1-2) (1998) 31-46. | Zbl

[8] Bayer D., Stillman M., A criterion for detecting m-regularity, Invent. Math. 87 (1987) 1-11. | MR | Zbl

[9] Bayer D., Sturmfels B., Cellular resolutions of monomial modules, J. reine angew. Math. 502 (1998) 123-140. | MR | Zbl

[10] Berenstein C., Yger A., About L. Ehrenpreis fundamental principle, in: Geometrical and Algebraical Aspects in Several Complex Variables, Cetraro, 1989, Sem. Conf., vol. 8, EditEl, Rende, 1991, pp. 47-61. | MR | Zbl

[11] Berenstein C., Yger A., Effective Bezout identities in Q[z1,,zn], Acta Math. 166 (1991) 69-120. | MR | Zbl

[12] Berenstein C., Gay R., Vidras A., Yger A., Residue Currents and Bézout Identities, Birkhäuser, 1993. | MR | Zbl

[13] Berndtsson B., A formula for division and interpolation, Math. Ann. 263 (1983). | EuDML | MR | Zbl

[14] Berndtsson B., Passare M., Integral formulas and an explicit version of the fundamental principle, J. Funct. Anal. 84 (1989). | MR | Zbl

[15] Björk J.-E., Residues and D-modules, in: The legacy of Niels Henrik Abel, Springer, Berlin, 2004, pp. 605-651. | MR | Zbl

[16] Coleff N.R., Herrera M.E., Les courants résiduels associés à une forme méromorphe, Lect. Notes in Math., vol. 633, Springer-Verlag, Berlin-Heidelberg-New York, 1978. | Zbl

[17] Demailly J.P., Complex Analytic and Differential Geometry Monograph Grenoble, 1997.

[18] Dickenstein A., Sessa C., Canonical representatives in moderate cohomology, Invent. Math. 80 (1985) 417-434. | EuDML | MR | Zbl

[19] Dickenstein A., Gay R., Sessa C., Yger A., Analytic functionals annihilated by ideals, Manuscripta Math. 90 (1996) 175-223. | EuDML | MR | Zbl

[20] Ehrenpreis L., Fourier Analysis in Several Complex Variables, Pure and Applied Mathematics, vol. XVII, Wiley-Interscience Publishers. A Division of John Wiley and Sons, New York-London-Sydney, 1970. | Zbl

[21] Eisenbud D., Commutative Algebra. With a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. | MR | Zbl

[22] Eisenbud D., The Geometry of Syzygies. A Second Course in Commutative Algebra and Algebraic Geometry, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. | MR | Zbl

[23] Griffiths Ph., Harris J., Principles of Algebraic Geometry, John Wiley and Sons, 1978. | MR | Zbl

[24] Gunning R., Rossi H., Analytic Functions of Several Complex Variables, Prentice-Hall Inc., Englewood Cliffs, NJ, 1965. | MR | Zbl

[25] Hörmander L., An Introduction to Complex Analysis in Several Variables, North-Holland Mathematical Library, vol. 7, Second revised edition, North-Holland Publishing Co., American Elsevier Publishing Co., Inc., Amsterdam-London/New York, 1973. | Zbl

[26] Hörmander L., The Analysis of Linear Partial Differential Operators I, second ed., Springer-Verlag, 1990. | Zbl

[27] Mayr E., Mayer A., The complexity of the word problem for commutative semigroups and polynomial ideals, Adv. Math. 46 (1982) 305-329. | MR | Zbl

[28] Miller E., Sturmfels B., Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. | MR | Zbl

[29] Nöther M., Über einen Satz aus der Theorie der algebraischen Functionen, Math. Ann. (1873) 351-359. | EuDML | JFM | MR

[30] Palamodov V.P., Linear Differential Operators with Constant Coefficients, Translated from the Russian by A.A. Brown, Die Grundlehren der mathematischen Wissenschaften, vol. 168, Springer-Verlag, New York-Berlin, 1970. | Zbl

[31] Passare M., Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand. 62 (1988) 75-152. | EuDML | MR | Zbl

[32] Yger A., Formules de division et prolongement méromorphe, in: Séminaire d'Analyse P. Lelong-P. Dolbeault-H. Skoda, Années 1985/1986, Lecture Notes in Math., vol. 1295, Springer, Berlin, 1987, pp. 226-283. | Zbl

[33] Passare M., Tsikh A., Yger A., Residue currents of the Bochner-Martinelli type, Publ. Mat. 44 (2000) 85-117. | EuDML | Zbl

[34] Quillen D., Superconnections and the Chern character, Topology 24 (1985) 89-95. | MR | Zbl

[35] Shiffman B., Degree bounds for the division problem in polynomial ideals, Michigan Math. J. 36 (1989) 163-171. | MR | Zbl

[36] Wulcan E., Residue currents of monomial ideals, Indiana Univ. J. 56 (2007) 36-388. | MR | Zbl

[37] Wulcan E., Residue currents and their annihilator ideals, Thesis Gothenburg, 2007.

  • Andersson, Mats Lp-estimates of extensions of holomorphic functions defined on a non-reduced subvariety, Annales de l'Institut Fourier, Volume 74 (2024) no. 2, p. 783 | DOI:10.5802/aif.3586
  • Andersson, Mats The flatness of the 𝒪-module of smooth functions and integral representation, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 32 (2023) no. 1, p. 1 | DOI:10.5802/afst.1725
  • Andersson, Mats; Lärkäng, Richard Norm Estimates for the ¯-Equation on a Non-reduced Space, The Journal of Geometric Analysis, Volume 33 (2023) no. 7 | DOI:10.1007/s12220-023-01290-1
  • Lärkäng, Richard; Wulcan, Elizabeth Residue currents and cycles of complexes of vector bundles, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 30 (2022) no. 5, p. 961 | DOI:10.5802/afst.1692
  • Johansson, Jimmy Polynomial interpolation and residue currents, Complex Variables and Elliptic Equations, Volume 67 (2022) no. 7, p. 1772 | DOI:10.1080/17476933.2021.1897796
  • Andersson, Mats A pointwise norm on a non-reduced analytic space, Journal of Functional Analysis, Volume 283 (2022) no. 4, p. 109520 | DOI:10.1016/j.jfa.2022.109520
  • Vidras, Alekos; Yger, Alain Bergman–Weil expansion for holomorphic functions, Mathematische Annalen, Volume 382 (2022) no. 1-2, p. 383 | DOI:10.1007/s00208-020-02137-8
  • Kalm, Håkan Samuelsson Integral representation of moderate cohomology, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 30 (2021) no. 1, p. 117 | DOI:10.5802/afst.1668
  • Andersson, Mats; Wulcan, Elizabeth Regularity of pseudomeromorphic currents, Bulletin des Sciences Mathématiques, Volume 173 (2021), p. 103055 | DOI:10.1016/j.bulsci.2021.103055
  • Samuelsson Kalm, Håkan The ¯-Equation, Duality, and Holomorphic Forms on a Reduced Complex Space, The Journal of Geometric Analysis, Volume 31 (2021) no. 2, p. 1786 | DOI:10.1007/s12220-019-00325-w
  • Wulcan, Elizabeth A Note on the Singularities of Residue Currents of Integrally Closed Ideals, Acta Mathematica Vietnamica, Volume 45 (2020) no. 1, p. 281 | DOI:10.1007/s40306-019-00342-5
  • Lärkäng, Richard Explicit versions of the local duality theorem in Cn, Illinois Journal of Mathematics, Volume 63 (2019) no. 1 | DOI:10.1215/00192082-7600070
  • Andersson, Mats; Lärkäng, Richard The ¯ ∂ ¯ -equation on a non-reduced analytic space, Mathematische Annalen, Volume 374 (2019) no. 1-2, p. 553 | DOI:10.1007/s00208-018-1678-8
  • Andersson, Mats Global Koppelman Formulas on (Singular) Projective Varieties, The Journal of Geometric Analysis, Volume 29 (2019) no. 3, p. 2290 | DOI:10.1007/s12220-018-0078-3
  • Babalic, Elena Mirela; Doryn, Dmitry; Lazaroiu, Calin Iuliu; Tavakol, Mehdi Differential Models for B-Type Open–Closed Topological Landau–Ginzburg Theories, Communications in Mathematical Physics, Volume 361 (2018) no. 3, p. 1169 | DOI:10.1007/s00220-018-3137-5
  • Sznajdman, Jacob A Briançon–Skoda-type result for a non-reduced analytic space, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018 (2018) no. 742, p. 1 | DOI:10.1515/crelle-2015-0099
  • Ruppenthal, Jean; Samuelsson Kalm, Håkan; Wulcan, Elizabeth Explicit Serre duality on complex spaces, Advances in Mathematics, Volume 305 (2017), p. 1320 | DOI:10.1016/j.aim.2016.10.013
  • Méo, Michel Regularization of closed positive currents and intersection theory, Complex Manifolds, Volume 4 (2017) no. 1, p. 120 | DOI:10.1515/coma-2017-0008
  • Wulcan, Elizabeth On a representation of the fundamental class of an ideal due to Lejeune-Jalabert, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 25 (2016) no. 5, p. 1051 | DOI:10.5802/afst.1522
  • Andersson, Mats Pseudomeromorphic currents on subvarieties, Complex Variables and Elliptic Equations, Volume 61 (2016) no. 11, p. 1533 | DOI:10.1080/17476933.2016.1170822
  • Andersson, Mats; Nilsson, Lisa Division formulas on projective varieties, Mathematische Zeitschrift, Volume 284 (2016) no. 1-2, p. 575 | DOI:10.1007/s00209-016-1667-0
  • Lärkäng, Richard Residue currents with prescribed annihilator ideals on singular varieties, Mathematische Zeitschrift, Volume 279 (2015) no. 1-2, p. 333 | DOI:10.1007/s00209-014-1371-x
  • Lärkäng, Richard; Wulcan, Elizabeth Computing residue currents of monomial ideals using comparison formulas, Bulletin des Sciences Mathématiques, Volume 138 (2014) no. 3, p. 376 | DOI:10.1016/j.bulsci.2013.06.003
  • Yger, Alain A Conjecture by Leon Ehrenpreis About Zeroes of Exponential Polynomials, From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Volume 28 (2013), p. 517 | DOI:10.1007/978-1-4614-4075-8_26
  • Sznajdman, Jacob A residue calculus approach to the uniform Artin-Rees lemma, Israel Journal of Mathematics, Volume 196 (2013) no. 1, p. 33 | DOI:10.1007/s11856-012-0141-x
  • Lärkäng, Richard On the duality theorem on an analytic variety, Mathematische Annalen, Volume 355 (2013) no. 1, p. 215 | DOI:10.1007/s00208-012-0782-4
  • Lärkäng, Richard Residue currents associated with weakly holomorphic functions, Arkiv för Matematik, Volume 50 (2012) no. 1, p. 135 | DOI:10.1007/s11512-010-0141-1
  • Andersson, Mats; Samuelsson, Håkan A Dolbeault-Grothendieck lemma on complex spaces via Koppelman formulas, Inventiones mathematicae, Volume 190 (2012) no. 2, p. 261 | DOI:10.1007/s00222-012-0380-9
  • Vidras, Alekos; Yger, Alain Coleff–Herrera Currents Revisited, The Mathematical Legacy of Leon Ehrenpreis, Volume 16 (2012), p. 327 | DOI:10.1007/978-88-470-1947-8_21
  • Yger, Alain Averaging Residue Currents and the Stückrad–Vogel Algorithm, The Mathematical Legacy of Leon Ehrenpreis, Volume 16 (2012), p. 367 | DOI:10.1007/978-88-470-1947-8_23
  • Andersson, Mats; Samuelsson, Håkan Weighted Koppelman formulas and the ∂¯-equation on an analytic space, Journal of Functional Analysis, Volume 261 (2011) no. 3, p. 777 | DOI:10.1016/j.jfa.2011.02.018
  • Andersson, Mats; Götmark, Elin Explicit representation of membership in polynomial ideals, Mathematische Annalen, Volume 349 (2011) no. 2, p. 345 | DOI:10.1007/s00208-010-0524-4
  • Andersson, Mats A residue criterion for strong holomorphicity, Arkiv för Matematik, Volume 48 (2010) no. 1, p. 1 | DOI:10.1007/s11512-009-0100-x
  • Andersson, Mats; Wulcan, Elizabeth Decomposition of residue currents, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2010 (2010) no. 638 | DOI:10.1515/crelle.2010.004
  • Björk, Jan-Erik; Samuelsson, Håkan Regularizations of residue currents, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2010 (2010) no. 649 | DOI:10.1515/crelle.2010.087
  • Wulcan, Elizabeth Some variants of Macaulay's and Max Noether's theorems, Journal of Commutative Algebra, Volume 2 (2010) no. 4 | DOI:10.1216/jca-2010-2-4-567
  • Wulcan, Elizabeth Residue currents constructed from resolutions of monomial ideals, Mathematische Zeitschrift, Volume 262 (2009) no. 2, p. 235 | DOI:10.1007/s00209-008-0371-0

Cité par 37 documents. Sources : Crossref