Weighted Poincaré inequality and rigidity of complete manifolds
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 39 (2006) no. 6, pp. 921-982.
@article{ASENS_2006_4_39_6_921_0,
     author = {Li, Peter and Wang, Jiaping},
     title = {Weighted {Poincar\'e} inequality and rigidity of complete manifolds},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {921--982},
     publisher = {Elsevier},
     volume = {Ser. 4, 39},
     number = {6},
     year = {2006},
     doi = {10.1016/j.ansens.2006.11.001},
     mrnumber = {2316978},
     zbl = {05149414},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.ansens.2006.11.001/}
}
TY  - JOUR
AU  - Li, Peter
AU  - Wang, Jiaping
TI  - Weighted Poincaré inequality and rigidity of complete manifolds
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2006
SP  - 921
EP  - 982
VL  - 39
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.ansens.2006.11.001/
DO  - 10.1016/j.ansens.2006.11.001
LA  - en
ID  - ASENS_2006_4_39_6_921_0
ER  - 
%0 Journal Article
%A Li, Peter
%A Wang, Jiaping
%T Weighted Poincaré inequality and rigidity of complete manifolds
%J Annales scientifiques de l'École Normale Supérieure
%D 2006
%P 921-982
%V 39
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.ansens.2006.11.001/
%R 10.1016/j.ansens.2006.11.001
%G en
%F ASENS_2006_4_39_6_921_0
Li, Peter; Wang, Jiaping. Weighted Poincaré inequality and rigidity of complete manifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 39 (2006) no. 6, pp. 921-982. doi : 10.1016/j.ansens.2006.11.001. https://www.numdam.org/articles/10.1016/j.ansens.2006.11.001/

[1] Agmon S., Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ, 1982. | MR | Zbl

[2] Cai M., Galloway G.J., Boundaries of zero scalar curvature in the ADS/CFT correspondence, Adv. Theor. Math. Phys. 3 (1999) 1769-1783. | MR | Zbl

[3] Cao H., Shen Y., Zhu S., The structure of stable minimal hypersurfaces in Rn+1, Math. Res. Lett. 4 (1997) 637-644. | MR | Zbl

[4] Cheng S.Y., Yau S.T., Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975) 333-354. | MR | Zbl

[5] Fefferman C., Phong D.H., The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math. 34 (1981) 285-331. | MR | Zbl

[6] Fefferman C., Phong D.H., Lower bounds for Schrödinger equations, in: Conference on Partial Differential Equations (Saint Jean de Monts, 1982), Conf. No. 7, Soc. Math. France, Paris, 1982, 7 pp. | Numdam | MR | Zbl

[7] Li P., Lecture Notes on Geometric Analysis, Lecture Notes Series, vol. 6, Research Institute of Mathematics and Global Analysis Research Center, Seoul National University, Seoul, 1993. | MR | Zbl

[8] Li P., Curvature and function theory on Riemannian manifolds, in: Surveys in Differential Geometry: Papers Dedicated to Atiyah, Bott, Hirzebruch, and Singer, vol. VII, International Press, Cambridge, 2000, pp. 375-432. | MR | Zbl

[9] Li P., Tam L.F., Complete surfaces with finite total curvature, J. Diff. Geom. 33 (1991) 139-168. | MR | Zbl

[10] Li P., Tam L.F., Harmonic functions and the structure of complete manifolds, J. Diff. Geom. 35 (1992) 359-383. | MR | Zbl

[11] Li P., Wang J., Complete manifolds with positive spectrum, J. Diff. Geom. 58 (2001) 501-534. | MR | Zbl

[12] Li P., Wang J., Complete manifolds with positive spectrum, II, J. Diff. Geom. 62 (2002) 143-162. | MR | Zbl

[13] Li P., Wang J., Comparison theorem for Kähler manifolds and positivity of spectrum, J. Diff. Geom. 69 (2005) 43-74. | MR | Zbl

[14] Nakai M., On Evans potential, Proc. Japan Acad. 38 (1962) 624-629. | MR | Zbl

[15] Napier T., Ramachandran M., Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems, Geom. Funct. Anal. 5 (1995) 809-851. | MR | Zbl

[16] Schoen R., Yau S.T., Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Comm. Math. Helv. 39 (1981) 333-341. | MR | Zbl

[17] Schoen R., Yau S.T., Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988) 47-71. | MR | Zbl

[18] Varopoulos N., Potential theory and diffusion on Riemannian manifolds, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund, vols. I, II, Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 821-837. | MR | Zbl

[19] Wang X., On conformally compact Einstein manifolds, Math. Res. Lett. 8 (2001) 671-688. | MR | Zbl

[20] Witten E., Yau S.T., Connectness of the boundary in the ADS.CFT correspondence, Adv. Theor. Math. Phys. 3 (1999) 1635-1655. | MR | Zbl

[21] Yau S.T., Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975) 201-228. | MR | Zbl

[22] Yau S.T., Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976) 659-670. | MR | Zbl

  • Sturm, Karl-Theodor Bakry–Émery, Hardy, and spectral gap estimates on manifolds with conical singularities, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 3 | DOI:10.1007/s00526-025-02946-2
  • An, Jiaxing; Dou, Jingbo; Han, Yazhou Almost sharp weighted Sobolev trace inequalities in the unit ball under constraints, Communications in Contemporary Mathematics, Volume 26 (2024) no. 06 | DOI:10.1142/s0219199723500256
  • Munteanu, Ovidiu; Wang, Jiaping Bottom spectrum of three-dimensional manifolds with scalar curvature lower bound, Journal of Functional Analysis, Volume 287 (2024) no. 2, p. 110457 | DOI:10.1016/j.jfa.2024.110457
  • Impera, Debora; Rimoldi, Michele Poincaré Inequality and Topological Rigidity of Translators and Self-Expanders for the Mean Curvature Flow, The Journal of Geometric Analysis, Volume 34 (2024) no. 9 | DOI:10.1007/s12220-024-01711-9
  • Pham, Duc Thoan; Nguyen, Dang Tuyen; Tran, Van Khien Vanishing theorems for complete Riemannian manifolds with weighted p-Poincaré inequality, Asian-European Journal of Mathematics, Volume 16 (2023) no. 06 | DOI:10.1142/s1793557123501097
  • Pham, Duc Thoan; Tran, Van Khien; Nguyen, Thi Hong On Vanishing Theorems for Locally Conformally Flat Riemannian Manifolds with an Integral Pinching Condition, Communications in Mathematics and Statistics (2023) | DOI:10.1007/s40304-023-00372-4
  • Munteanu, Ovidiu; Wang, Jiaping Comparison Theorems for 3D Manifolds With Scalar Curvature Bound, International Mathematics Research Notices, Volume 2023 (2023) no. 3, p. 2215 | DOI:10.1093/imrn/rnab307
  • Alencar, Hilário; Batista, Márcio; Silva Neto, Gregório Poincaré type inequality for hypersurfaces and rigidity results, Journal of Differential Equations, Volume 369 (2023), p. 156 | DOI:10.1016/j.jde.2023.05.045
  • Cho, Gunhee; Thac Dung, Nguyen Vanishing results from Lichnerowicz Laplacian on complete Kähler manifolds and applications, Journal of Mathematical Analysis and Applications, Volume 517 (2023) no. 1, p. 126602 | DOI:10.1016/j.jmaa.2022.126602
  • Dung, Ha Tuan; Dung, Nguyen Thac; Tuyen, Nguyen Dang A Note on p-Harmonic -Forms on Complete Non-compact Manifolds, Mediterranean Journal of Mathematics, Volume 20 (2023) no. 2 | DOI:10.1007/s00009-023-02280-x
  • Munteanu, Ovidiu; Sung, Chiung-Jue Anna; Wang, Jiaping Area and Spectrum Estimates for Stable Minimal Surfaces, The Journal of Geometric Analysis, Volume 33 (2023) no. 2 | DOI:10.1007/s12220-022-01076-x
  • JIN, YONGYANG; SHEN, SHOUFENG SOME -HARDY AND -RELLICH TYPE INEQUALITIES WITH REMAINDER TERMS, Journal of the Australian Mathematical Society, Volume 113 (2022) no. 1, p. 79 | DOI:10.1017/s1446788721000100
  • Nguyen, Van Hoang Sharp Caffarelli–Kohn–Nirenberg inequalities on Riemannian manifolds: the influence of curvature, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 152 (2022) no. 1, p. 102 | DOI:10.1017/prm.2020.100
  • Cho, Gunhee; Thac Dung, Dung; Quang Huy, Tra Rigidity Results with Curvature Conditions from Lichnerowicz Laplacian and Applications, SSRN Electronic Journal (2022) | DOI:10.2139/ssrn.4162680
  • Wang, Lihan Rigidity of Complete Manifolds with Weighted Poincaré Inequality, The Journal of Geometric Analysis, Volume 32 (2022) no. 11 | DOI:10.1007/s12220-022-01029-4
  • Chow, Bennett Li–Yau Inequalities in Geometric Analysis Dedicated to Professor Peter Li on the occasion of his 70th Birthday, The Journal of Geometric Analysis, Volume 32 (2022) no. 11 | DOI:10.1007/s12220-022-01017-8
  • Zhu, Bo Comparison Theorem and Integral of Scalar Curvature on Three Manifolds, The Journal of Geometric Analysis, Volume 32 (2022) no. 7 | DOI:10.1007/s12220-022-00934-y
  • Roychowdhury, Prasun On higher order Poincaré inequalities with radial derivatives and Hardy improvements on the hyperbolic space, Annali di Matematica Pura ed Applicata (1923 -), Volume 200 (2021) no. 6, p. 2333 | DOI:10.1007/s10231-021-01083-9
  • Zhou, Jiuru Lf2-harmonic 1-forms on smooth metric measure spaces with positive λ1(Δf), Archiv der Mathematik, Volume 116 (2021) no. 6, p. 693 | DOI:10.1007/s00013-021-01588-y
  • Pham, Duc Thoan; Nguyen, Dang Tuyen Vanishing Theorems for Riemannian Manifolds with Nonnegative Scalar Curvature and Weighted p-Poincaré Inequality, Bulletin of the Malaysian Mathematical Sciences Society, Volume 44 (2021) no. 6, p. 3541 | DOI:10.1007/s40840-021-01131-w
  • Munteanu, Ovidiu; Schulze, Felix; Wang, Jiaping Positive solutions to Schrödinger equations and geometric applications, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2021 (2021) no. 774, p. 185 | DOI:10.1515/crelle-2020-0046
  • Goldstein, Gisèle Ruiz; Goldstein, Jerome A.; Kömbe, Ismail; Bakim, Sümeyye Nonexistence results for parabolic equations involving the \varvecp-Laplacian and Hardy–Leray-type inequalities on Riemannian manifolds, Journal of Evolution Equations, Volume 21 (2021) no. 3, p. 3675 | DOI:10.1007/s00028-021-00691-5
  • Li, Jing; Feng, Shuxiang; Zhao, Peibiao Geometries and Topologies of Conformally Flat Riemannian Manifolds, Bulletin of the Iranian Mathematical Society, Volume 46 (2020) no. 6, p. 1683 | DOI:10.1007/s41980-020-00352-2
  • Zhou, Jiuru Vanishing theorems for L2 harmonic p-forms on Riemannian manifolds with a weighted p-Poincaré inequality, Journal of Mathematical Analysis and Applications, Volume 490 (2020) no. 1, p. 124229 | DOI:10.1016/j.jmaa.2020.124229
  • Mai, Weixiong; Ou, Jianyu Uncertainty principle and its rigidity on complete gradient shrinking Ricci solitons, Proceedings of the American Mathematical Society, Volume 149 (2020) no. 1, p. 285 | DOI:10.1090/proc/15210
  • Munteanu, Ovidiu; Sung, Chiung-Jue; Wang, Jiaping Weighted Poincaré inequality and the Poisson Equation, Transactions of the American Mathematical Society, Volume 374 (2020) no. 3, p. 2167 | DOI:10.1090/tran/8291
  • Munteanu, Ovidiu; Anna Sung, Chiung-Jue; Wang, Jiaping Poisson equation on complete manifolds, Advances in Mathematics, Volume 348 (2019), p. 81 | DOI:10.1016/j.aim.2019.03.019
  • Lin, Hezi Vanishing theorems for complete Riemannian manifolds with nonnegative scalar curvature, Geometriae Dedicata, Volume 201 (2019) no. 1, p. 187 | DOI:10.1007/s10711-018-0388-4
  • Dong, Yuxin; Lin, Hezi; Wei, Shihshu Walter L2 curvature pinching theorems and vanishing theorems on complete Riemannian manifolds, Tohoku Mathematical Journal, Volume 71 (2019) no. 4 | DOI:10.2748/tmj/1576724795
  • Munteanu, Ovidiu; Wang, Lihan Gradient estimate for harmonic functions on Kähler manifolds, Transactions of the American Mathematical Society, Volume 372 (2019) no. 12, p. 8759 | DOI:10.1090/tran/7891
  • Chan, Hardy; Ghoussoub, Nassif; Mazumdar, Saikat; Shakerian, Shaya; de Oliveira Faria, Luiz Fernando Mass and Extremals Associated with the Hardy–Schrödinger Operator on Hyperbolic Space, Advanced Nonlinear Studies, Volume 18 (2018) no. 4, p. 671 | DOI:10.1515/ans-2018-2025
  • Kristály, Alexandru Sharp uncertainty principles on Riemannian manifolds: the influence of curvature, Journal de Mathématiques Pures et Appliquées, Volume 119 (2018), p. 326 | DOI:10.1016/j.matpur.2017.09.002
  • Cheng, Xu; Zhou, Detang Spectral properties and rigidity for self-expanding solutions of the mean curvature flows, Mathematische Annalen, Volume 371 (2018) no. 1-2, p. 371 | DOI:10.1007/s00208-018-1662-3
  • Wang, Lin Feng On f-non-parabolic ends for Ricci-harmonic metrics, Annals of Global Analysis and Geometry, Volume 51 (2017) no. 1, p. 91 | DOI:10.1007/s10455-016-9525-1
  • Tasayco, Ditter; Zhou, Detang Uniqueness of grim hyperplanes for mean curvature flows, Archiv der Mathematik, Volume 109 (2017) no. 2, p. 191 | DOI:10.1007/s00013-017-1057-9
  • Berchio, Elvise; Ganguly, Debdip; Grillo, Gabriele Sharp Poincaré–Hardy and Poincaré–Rellich inequalities on the hyperbolic space, Journal of Functional Analysis, Volume 272 (2017) no. 4, p. 1661 | DOI:10.1016/j.jfa.2016.11.018
  • Dung, Nguyen Thac p-harmonic ℓ-forms on Riemannian manifolds with a weighted Poincaré inequality, Nonlinear Analysis: Theory, Methods Applications, Volume 150 (2017), p. 138 | DOI:10.1016/j.na.2016.11.008
  • Ganguly, Debdip; Berchio, Elvise Improved higher order poincaré inequalities on the hyperbolic space via Hardy-type remainder terms, Communications on Pure and Applied Analysis, Volume 15 (2016) no. 5, p. 1871 | DOI:10.3934/cpaa.2016020
  • Vieira, Matheus Vanishing theorems for L2 L 2 harmonic forms on complete Riemannian manifolds, Geometriae Dedicata, Volume 184 (2016) no. 1, p. 175 | DOI:10.1007/s10711-016-0165-1
  • Bianchini, Bruno; Mari, Luciano; Rigoli, Marco Yamabe type equations with a sign-changing nonlinearity, and the prescribed curvature problem, Journal of Differential Equations, Volume 260 (2016) no. 10, p. 7416 | DOI:10.1016/j.jde.2016.01.031
  • Dung, Nguyen Thac; Dat, Nguyen Duy Weighted p-harmonic functions and rigidity of smooth metric measure spaces, Journal of Mathematical Analysis and Applications, Volume 443 (2016) no. 2, p. 959 | DOI:10.1016/j.jmaa.2016.05.065
  • Kombe, Ismail; Yener, Abdullah Weighted Hardy and Rellich type inequalities on Riemannian manifolds, Mathematische Nachrichten, Volume 289 (2016) no. 8-9, p. 994 | DOI:10.1002/mana.201500237
  • Bianchini, Bruno; Mari, Luciano; Rigoli, Marco Yamabe type equations with sign-changing nonlinearities on non-compact Riemannian manifolds, Journal of Functional Analysis, Volume 268 (2015) no. 1, p. 1 | DOI:10.1016/j.jfa.2014.10.016
  • Lin, Hezi On the structure of conformally flat Riemannian manifolds, Nonlinear Analysis: Theory, Methods Applications, Volume 123-124 (2015), p. 115 | DOI:10.1016/j.na.2015.05.001
  • Chang, Shu-Cheng; Chen, Jui-Tang; Wei, Shihshu Liouville properties for 𝑝-harmonic maps with finite 𝑞-energy, Transactions of the American Mathematical Society, Volume 368 (2015) no. 2, p. 787 | DOI:10.1090/tran/6351
  • D'Ambrosio, Lorenzo; Dipierro, Serena Hardy inequalities on Riemannian manifolds and applications, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 31 (2014) no. 3, p. 449 | DOI:10.1016/j.anihpc.2013.04.004
  • Devyver, Baptiste; Fraas, Martin; Pinchover, Yehuda Optimal hardy weight for second-order elliptic operator: An answer to a problem of Agmon, Journal of Functional Analysis, Volume 266 (2014) no. 7, p. 4422 | DOI:10.1016/j.jfa.2014.01.017
  • Fu, Hai-Ping Rigidity theorems on smooth metric measure spaces with weighted Poincaré inequality, Nonlinear Analysis: Theory, Methods Applications, Volume 98 (2014), p. 1 | DOI:10.1016/j.na.2013.12.002
  • Chang, Ting-Hui; Huang, Yen-Chang THE LIOUVILLE PROPERTY FOR PSEUDOHARMONIC MAPS WITH FINITE DIRICHLET ENERGY, Taiwanese Journal of Mathematics, Volume 18 (2014) no. 4 | DOI:10.11650/tjm.18.2014.4064
  • Adamowicz, Tomasz; Björn, Anders; Björn, Jana; Shanmugalingam, Nageswari Prime ends for domains in metric spaces, Advances in Mathematics, Volume 238 (2013), p. 459 | DOI:10.1016/j.aim.2013.01.014
  • ZHU, PENG L 2 harmonic forms and finiteness of ends, Anais da Academia Brasileira de Ciências, Volume 85 (2013) no. 2, p. 457 | DOI:10.1590/s0001-37652013000200003
  • Munteanu, Ovidiu; Sesum, Natasa On Gradient Ricci Solitons, Journal of Geometric Analysis, Volume 23 (2013) no. 2, p. 539 | DOI:10.1007/s12220-011-9252-6
  • Devyver, Baptiste; Fraas, Martin; Pinchover, Yehuda Optimal Hardy-type inequalities for elliptic operators, Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, p. 475 | DOI:10.1016/j.crma.2012.04.020
  • Su, Yan-Hui; Zhang, Hui-Chun Rigidity of manifolds with Bakry–Émery Ricci curvature bounded below, Geometriae Dedicata, Volume 160 (2012) no. 1, p. 321 | DOI:10.1007/s10711-011-9685-x
  • Fu, Hai-Ping; Yang, Deng-Yun Vanishing theorems on complete manifolds with weighted Poincaré inequality and applications, Nagoya Mathematical Journal, Volume 206 (2012), p. 25 | DOI:10.1215/00277630-1548475
  • Munteanu, Ovidiu; Sesum, Natasa The Poisson equation on complete manifolds with positive spectrum and applications, Advances in Mathematics, Volume 223 (2010) no. 1, p. 198 | DOI:10.1016/j.aim.2009.08.003
  • FU, HAIPING; LI, ZHENQI THE STRUCTURE OF COMPLETE MANIFOLDS WITH WEIGHTED POINCARÉ INEQUALITY AND MINIMAL HYPERSURFACES, International Journal of Mathematics, Volume 21 (2010) no. 11, p. 1421 | DOI:10.1142/s0129167x10006550
  • Chen, Jui-Tang Ray Stable complete noncompact hypersurfaces with constant mean curvature, Annals of Global Analysis and Geometry, Volume 36 (2009) no. 2, p. 161 | DOI:10.1007/s10455-009-9155-y
  • Chen, Jui-Tang Ray; Sung, Chiung-Jue Harmonic forms on manifolds with weighted Poincaré inequality, Pacific Journal of Mathematics, Volume 242 (2009) no. 2, p. 201 | DOI:10.2140/pjm.2009.242.201

Cité par 59 documents. Sources : Crossref