Riesz transform on manifolds and heat kernel regularity
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 37 (2004) no. 6, pp. 911-957.
@article{ASENS_2004_4_37_6_911_0,
     author = {Auscher, Pascal and Coulhon, Thierry and Duong, Xuan Thinh and Hofmann, Steve},
     title = {Riesz transform on manifolds and heat kernel regularity},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {911--957},
     publisher = {Elsevier},
     volume = {Ser. 4, 37},
     number = {6},
     year = {2004},
     doi = {10.1016/j.ansens.2004.10.003},
     mrnumber = {2119242},
     zbl = {1086.58013},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.ansens.2004.10.003/}
}
TY  - JOUR
AU  - Auscher, Pascal
AU  - Coulhon, Thierry
AU  - Duong, Xuan Thinh
AU  - Hofmann, Steve
TI  - Riesz transform on manifolds and heat kernel regularity
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2004
SP  - 911
EP  - 957
VL  - 37
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.ansens.2004.10.003/
DO  - 10.1016/j.ansens.2004.10.003
LA  - en
ID  - ASENS_2004_4_37_6_911_0
ER  - 
%0 Journal Article
%A Auscher, Pascal
%A Coulhon, Thierry
%A Duong, Xuan Thinh
%A Hofmann, Steve
%T Riesz transform on manifolds and heat kernel regularity
%J Annales scientifiques de l'École Normale Supérieure
%D 2004
%P 911-957
%V 37
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.ansens.2004.10.003/
%R 10.1016/j.ansens.2004.10.003
%G en
%F ASENS_2004_4_37_6_911_0
Auscher, Pascal; Coulhon, Thierry; Duong, Xuan Thinh; Hofmann, Steve. Riesz transform on manifolds and heat kernel regularity. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 37 (2004) no. 6, pp. 911-957. doi : 10.1016/j.ansens.2004.10.003. https://www.numdam.org/articles/10.1016/j.ansens.2004.10.003/

[1] Alexopoulos G., An application of homogeneization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Canad. J. Math. 44 (4) (1992) 691-727. | MR | Zbl

[2] Auscher P., On necessary and sufficient conditions for Lp-estimates of Riesz transforms associated to elliptic operators on Rn and related estimates, preprint 2004-04, Université de Paris-Sud, Mathématiques.

[3] Auscher P., Hofmann S., Lacey M., Mcintosh A., Tchamitchian P., The solution of the Kato square root problem for second order elliptic operators on Rn, Annals of Math. 156 (2002) 633-654. | MR | Zbl

[4] Auscher P., Tchamitchian P., Square Root Problem for Divergence Operators and Related Topics, Astérisque, vol. 249, 1998. | Numdam | MR | Zbl

[5] Auscher P., Coulhon T., Riesz transforms on manifolds and Poincaré inequalities, preprint, 2004. | Numdam | MR

[6] Bakry D., Transformations de Riesz pour les semi-groupes symétriques, Seconde partie: étude sous la condition Γ20, in: Séminaire de Probabilités XIX, Lecture Notes, vol. 1123, Springer, Berlin, 1985, pp. 145-174. | Numdam | MR | Zbl

[7] Bakry D., Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, in: Séminaire de Probabilités XXI, Lecture Notes, vol. 1247, Springer, Berlin, 1987, pp. 137-172. | Numdam | MR | Zbl

[8] Bakry D., The Riesz transforms associated with second order differential operators, in: Seminar on Stochastic Processes, vol. 88, Birkhäuser, Basel, 1989. | MR | Zbl

[9] Blunck S., Kunstmann P., Calderón-Zygmund theory for non-integral operators and the H functional calculus, Rev. Mat. Iberoamer. 19 (3) (2003) 919-942. | MR | Zbl

[10] Caffarelli L., Peral I., On W1,p estimates for elliptic equations in divergence form, Comm. Pure Appl. Math. 51 (1998) 1-21. | MR | Zbl

[11] Carron G., Formes harmoniques L2 sur les variétés non-compactes, Rend. Mat. Appl. 7 (21) (2001), 1-4, 87-119. | MR | Zbl

[12] Chavel I., Riemannian Geometry: A Modern Introduction, Cambridge Tracts in Mathematics, vol. 108, Cambridge University Press, Cambridge, 1993. | MR | Zbl

[13] Chen J.-C., Heat kernels on positively curved manifolds and applications, Ph. D. thesis, Hanghzhou university, 1987.

[14] Coifman R., Rochberg R., Another characterization of BMO, Proc. Amer. Math. Soc. 79 (2) (1980) 249-254. | MR | Zbl

[15] Coifman R., Weiss G., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977) 569-645. | MR | Zbl

[16] Coulhon T., Noyau de la chaleur et discrétisation d'une variété riemannienne, Israel J. Math. 80 (1992) 289-300. | MR | Zbl

[17] Coulhon T., Off-diagonal heat kernel lower bounds without Poincaré, J. London Math. Soc. 68 (3) (2003) 795-816. | MR | Zbl

[18] Coulhon T., Duong X.T., Riesz transforms for 1p2, Trans. Amer. Math. Soc. 351 (1999) 1151-1169. | MR | Zbl

[19] Coulhon T., Duong X.T., Riesz transforms for p>2, CRAS Paris, série I 332 (11) (2001) 975-980. | MR | Zbl

[20] Coulhon T., Duong X.T., Riesz transform and related inequalities on non-compact Riemannian manifolds, Comm. Pure Appl. Math. 56 (12) (2003) 1728-1751. | MR | Zbl

[21] Coulhon T., Grigor'Yan A., Pittet Ch., A geometric approach to on-diagonal heat kernel lower bounds on groups, Ann. Inst. Fourier 51 (6) (2001) 1763-1827. | Numdam | MR | Zbl

[22] Coulhon T., Li H.Q., Estimations inférieures du noyau de la chaleur sur les variétés coniques et transformée de Riesz, Archiv der Mathematik 83 (2004) 229-242. | MR | Zbl

[23] Coulhon T., Müller D., Zienkiewicz J., About Riesz transforms on the Heisenberg groups, Math. Ann. 305 (2) (1996) 369-379. | MR | Zbl

[24] Coulhon T., Saloff-Coste L., Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamer. 9 (2) (1993) 293-314. | MR | Zbl

[25] Coulhon T., Sikora A., Gaussian heat kernel bounds via Phragmén-Lindelöf theorems, preprint.

[26] Cranston M., Gradient estimates on manifolds using coupling, J. Funct. Anal. 99 (1) (1991) 110-124. | MR | Zbl

[27] Davies E.B., Heat kernel bounds, conservation of probability and the Feller property, J. d'Analyse Math. 58 (1992) 99-119. | MR | Zbl

[28] Davies E.B., Uniformly elliptic operators with measurable coefficients, J. Funct. Anal. 132 (1995) 141-169. | MR | Zbl

[29] De Rham G., Variétés différentiables, formes, courants, formes harmoniques, Hermann, Paris, 1973. | MR | Zbl

[30] Dragičević O., Volberg A., Bellman functions and dimensionless estimates of Riesz transforms, preprint.

[31] Driver B., Melcher T., Hypoelliptic heat kernel inequalities on the Heisenberg group, J. Funct. Anal., appeared online 11 September 2004. | MR | Zbl

[32] Dungey N., Heat kernel estimates and Riesz transforms on some Riemannian covering manifolds, Math. Z. 247 (4) (2004) 765-794. | MR | Zbl

[33] Dungey N., Riesz transforms on a discrete group of polynomial growth, Bull. London Math. Soc. 36 (6) (2004) 833-840. | MR | Zbl

[34] Dungey N., Some gradient estimates on covering manifolds, preprint. | MR

[35] Duong X.T., Mcintosh A., Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoamer. 15 (2) (1999) 233-265. | MR | Zbl

[36] Duong X.T., Robinson D., Semigroup kernels, Poisson bounds and holomorphic functional calculus, J. Funct. Anal. 142 (1) (1996) 89-128. | MR | Zbl

[37] Duong X.T., Yan L.X., New function spaces of BMO type, John-Nirenberg inequality, interpolation and applications, Comm. Pure Appl. Math., in press. | MR | Zbl

[38] Ter Elst A.F.M., Robinson D.W., Sikora A., Riesz transforms and Lie groups of polynomial growth, J. Funct. Anal. 162 (1) (1999) 14-51. | MR | Zbl

[39] Elworthy K., Li X.-M., Formulae for the derivatives of heat semigroups, J. Funct. Anal. 125 (1) (1994) 252-286. | MR | Zbl

[40] Feller W., An Introduction to Probability Theory and its Applications, vol. I, Wiley, New York, 1968. | MR | Zbl

[41] Fefferman C., Stein E., Hp spaces in several variables, Acta Math. 129 (1972) 137-193. | MR | Zbl

[42] Gaudry G., Sjögren P., Haar-like expansions and boundedness of a Riesz operator on a solvable Lie group, Math. Z. 232 (2) (1999) 241-256. | MR | Zbl

[43] Grigor'Yan A., On stochastically complete manifolds, DAN SSSR 290 (3) (1986) 534-537, in Russian; English translation:, Soviet Math. Doklady 34 (2) (1987) 310-313. | MR | Zbl

[44] Grigor'Yan A., The heat equation on non-compact Riemannian manifolds, Matem. Sbornik 182 (1) (1991) 55-87, in Russian; English translation:, Math. USSR Sb. 72 (1) (1992) 47-77. | MR | Zbl

[45] Grigor'Yan A., Upper bounds of derivatives of the heat kernel on an arbitrary complete manifold, J. Funct. Anal. 127 (1995) 363-389. | MR | Zbl

[46] Grigor'Yan A., Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Diff. Geom. 45 (1997) 33-52. | MR | Zbl

[47] Grigor'Yan A., Estimates of heat kernels on Riemannian manifolds, in: Davies B., Safarov Y. (Eds.), Spectral Theory and Geometry, London Math. Soc. Lecture Note Series, vol. 273, 1999, pp. 140-225. | MR | Zbl

[48] Hajłasz P., Sobolev spaces on an arbitrary metric space, Pot. Anal. 5 (1996) 403-415. | Zbl

[49] Hajłasz P., Koskela P., Sobolev meets Poincaré, CRAS Paris 320 (1995) 1211-1215. | Zbl

[50] Hajłasz P., Koskela P., Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000) 688. | Zbl

[51] Hebisch W., A multiplier theorem for Schrödinger operators, Coll. Math. 60/61 (1990) 659-664. | MR | Zbl

[52] Hebisch W., Steger T., Multipliers and singular integrals on exponential growth groups, Math. Z. 245 (2003) 35-61. | MR | Zbl

[53] Hofmann S., Martell J.M., Lp bounds for Riesz transforms and square roots associated to second order elliptic operators, Publ. Mat. 47 (2) (2003) 497-515. | MR | Zbl

[54] Ishiwata S., A Berry-Esseen type theorem on a nilpotent covering graph, Canad. J. Math., submitted for publication. | Zbl

[55] Ishiwata S., Asymptotic behavior of a transition probability for a random walk on a nilpotent covering graph, in: Discrete Geometric Analysis, Contemp. Math., vol. 347, Amer. Math. Soc., Providence, RI, 2004, pp. 57-68. | MR | Zbl

[56] Iwaniec T., The Gehring lemma, in: Quasiconformal Mappings and Analysis (Ann Arbor, MI, 1995), Springer, New York, 1998, pp. 181-204. | MR | Zbl

[57] Iwaniec T., Scott C., Stroffolini B., Nonlinear Hodge theory on manifolds with boundary, Annali di Matematica Pura ed Applicata, IV CLXXVII (1999) 37-115. | MR | Zbl

[58] Li H.-Q., La transformation de Riesz sur les variétés coniques, J. Funct. Anal. 168 (1999) 145-238. | MR | Zbl

[59] Li H.-Q., Estimations du noyau de la chaleur sur les variétés coniques et ses applications, Bull. Sci. Math. 124 (5) (2000) 365-384. | MR | Zbl

[60] Li H.-Q., Analyse sur les variétés cuspidales, Math. Ann. 326 (2003) 625-647. | MR | Zbl

[61] Li H.-Q., Lohoué N., Transformées de Riesz sur une classe de variétés à singularités coniques, J. Math. Pures Appl. 82 (2003) 275-312. | MR | Zbl

[62] Li J., Gradient estimate for the heat kernel of a complete Riemannian manifold and its applications, J. Funct. Anal. 97 (1991) 293-310. | MR | Zbl

[63] Li P., Yau S.T., On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986) 153-201. | MR | Zbl

[64] Li X.D., Riesz transforms and Schrödinger operators on complete Riemannian manifolds with negative Ricci curvature, preprint.

[65] Lohoué N., Comparaison des champs de vecteurs et des puissances du laplacien sur une variété riemannienne à courbure non positive, J. Funct. Anal. 61 (2) (1985) 164-201. | MR | Zbl

[66] Lohoué N., Estimation des projecteurs de de Rham-Hodge de certaines variétés riemanniennes non compactes, unpublished manuscript, 1984.

[67] Lohoué N., Inégalités de Sobolev pour les formes différentielles sur une variété riemannienne, CRAS Paris, série I 301 (6) (1985) 277-280. | MR | Zbl

[68] Lohoué N., Transformées de Riesz et fonctions de Littlewood-Paley sur les groupes non moyennables, CRAS Paris, série I 306 (1988) 327-330. | MR | Zbl

[69] Lohoué N., Mustapha S., Sur les transformées de Riesz sur les espaces homogènes des groupes de Lie semi-simples, Bull. Soc. Math. France 128 (4) (2000) 485-495. | Numdam | MR | Zbl

[70] Lohoué N., Mustapha S., Sur les transformées de Riesz sur les groupes de Lie moyennables et sur certains espaces homogènes, Canad. J. Math. 50 (5) (1998) 1090-1104. | MR | Zbl

[71] Marias M., Russ E., H1-boundedness of Riesz transforms and imaginary powers of the Laplacian on Riemannian manifolds, Ark. Mat. 41 (1) (2003) 115-132. | MR | Zbl

[72] Martell J.M., Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications, Studia Math. 161 (2) (2004) 113-145. | MR | Zbl

[73] Meyer P.-A., Transformations de Riesz pour les lois gaussiennes, in: Séminaire de Probabilités XVIII, Lecture Notes, vol. 1059, Springer, Berlin, 1984, pp. 179-193. | Numdam | MR | Zbl

[74] Meyer Y., Ondelettes et opérateurs, tome II, Hermann, Paris, 1990. | MR | Zbl

[75] Meyers N.G., An Lp estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa 3 (17) (1963) 189-206. | Numdam | MR | Zbl

[76] Picard J., Gradient estimates for some diffusion semigroups, Probab. Theory Related Fields 122 (2002) 593-612. | MR | Zbl

[77] Piquard F., Riesz transforms on generalized Heisenberg groups and Riesz transforms associated to the CCR heat flow, Publ. Mat. 48 (2) (2004) 309-333. | MR | Zbl

[78] Pisier G., Riesz transforms: a simpler analytic proof of P.A. Meyer's inequality, in: Séminaire de Probabilités XXII, Lecture Notes in Math., vol. 1321, Springer, Berlin, 1988, pp. 485-501. | Numdam | MR | Zbl

[79] Qian Z., Gradient estimates and heat kernel estimates, Proc. Royal Soc. Edinburgh 125A (1995) 975-990. | MR | Zbl

[80] Rumin M., Differential geometry on C-C spaces and application to the Novikov-Shubin numbers of nilpotent Lie groups, CRAS Paris, série I 329 (11) (1999) 985-990. | MR | Zbl

[81] Rumin M., Around heat decay on forms and relations of nilpotent Lie groups, in: Séminaire de théorie spectrale et géométrie de Grenoble, vol. 19, 2000-2001, pp. 123-164. | Numdam | MR | Zbl

[82] Russ E., Riesz transforms on graphs, Math. Scand. 87 (1) (2000) 133-160. | MR | Zbl

[83] Saloff-Coste L., Analyse sur les groupes de Lie à croissance polynomiale, Ark. Mat. 28 (1990) 315-331. | MR | Zbl

[84] Saloff-Coste L., A note on Poincaré, Sobolev and Harnack inequalities, Duke J. Math. 65 (1992) 27-38, I.R.M.N. | MR | Zbl

[85] Saloff-Coste L., Parabolic Harnack inequality for divergence form second order differential operators, Pot. Anal. 4 (4) (1995) 429-467. | MR | Zbl

[86] Scott C., Lp theory of differential forms on manifolds, Trans. Amer. Math. Soc. 347 (1995) 2075-2096. | MR | Zbl

[87] Shen Z., Bounds of Riesz transforms on Lp spaces for second order elliptic operators, Ann. Inst. Fourier, in press. | Numdam | Zbl

[88] Sikora A., Riesz transform, Gaussian bounds and the method of wave equation, Math. Z. 247 (3) (2004) 643-662. | MR | Zbl

[89] Stein E.M., Topics in harmonic analysis related to the Littlewood-Paley theory, Princeton UP, 1970. | MR | Zbl

[90] Stein E.M., Some results in harmonic analysis in Rn for n, Bull. Amer. Math. Soc. 9 (1983) 71-73. | MR | Zbl

[91] Stein E.M., Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton UP, 1993. | MR | Zbl

[92] Strichartz R., Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal. 52 (1983) 48-79. | MR | Zbl

[93] Strichartz R., Lp contractive projections and the heat semigroup for differential forms, J. Funct. Anal. 65 (1986) 348-357. | MR | Zbl

[94] Stroock D., Applications of Fefferman-Stein type interpolation to probability and analysis, Comm. Pure Appl. Math. XXVI (1973) 477-495. | MR | Zbl

[95] Stroock D., Turetsky J., Upper bounds on derivatives of the logarithm of the heat kernel, Comm. Anal. Geom. 6 (4) (1998) 669-685. | MR | Zbl

[96] Thalmaier A., Wang F.-Y., Gradient estimates for harmonic functions on regular domains in Riemannian manifolds, J. Funct. Anal. 155 (1) (1998) 109-124. | MR | Zbl

[97] Thalmaier A., Wang F.-Y., Derivative estimates of semigroups and Riesz transforms on vector bundles, Pot. Anal. 20 (2) (2004) 105-123. | MR | Zbl

[98] Varopoulos N., Analysis on Lie groups, J. Funct. Anal. 76 (1988) 346-410. | MR | Zbl

[99] Varopoulos N., Random walks and Brownian motion on manifolds, in: Analisi Armonica, Spazi Simmetrici e Teoria della Probabilità, Symposia Math., vol. XXIX, 1987, pp. 97-109. | MR | Zbl

[100] Yau S.T., Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J. 25 (1976) 659-670. | MR | Zbl

Cité par Sources :