Equivariant normal form for nondegenerate singular orbits of integrable hamiltonian systems
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 37 (2004) no. 6, pp. 819-839.
@article{ASENS_2004_4_37_6_819_0,
     author = {Miranda, Eva and Zung, Nguyen Tien},
     title = {Equivariant normal form for nondegenerate singular orbits of integrable hamiltonian systems},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {819--839},
     publisher = {Elsevier},
     volume = {Ser. 4, 37},
     number = {6},
     year = {2004},
     doi = {10.1016/j.ansens.2004.10.001},
     mrnumber = {2119240},
     zbl = {1068.37041},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.ansens.2004.10.001/}
}
TY  - JOUR
AU  - Miranda, Eva
AU  - Zung, Nguyen Tien
TI  - Equivariant normal form for nondegenerate singular orbits of integrable hamiltonian systems
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2004
SP  - 819
EP  - 839
VL  - 37
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.ansens.2004.10.001/
DO  - 10.1016/j.ansens.2004.10.001
LA  - en
ID  - ASENS_2004_4_37_6_819_0
ER  - 
%0 Journal Article
%A Miranda, Eva
%A Zung, Nguyen Tien
%T Equivariant normal form for nondegenerate singular orbits of integrable hamiltonian systems
%J Annales scientifiques de l'École Normale Supérieure
%D 2004
%P 819-839
%V 37
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.ansens.2004.10.001/
%R 10.1016/j.ansens.2004.10.001
%G en
%F ASENS_2004_4_37_6_819_0
Miranda, Eva; Zung, Nguyen Tien. Equivariant normal form for nondegenerate singular orbits of integrable hamiltonian systems. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 37 (2004) no. 6, pp. 819-839. doi : 10.1016/j.ansens.2004.10.001. https://www.numdam.org/articles/10.1016/j.ansens.2004.10.001/

[1] Bochner S., Compact groups of differentiable transformations, Ann. of Math. (2) 46 (1945) 372-381. | MR | Zbl

[2] Chaperon M., Quelques outils de la théorie des actions différentiables, in: Third Schnepfenried Geometry Conference, vol. 1 (Schnepfenried, 1982), Astérisque, vols. 107-108, Soc. Math. France, Paris, 1983, pp. 259-275. | Numdam | MR | Zbl

[3] Colin De Verdière Y., Vey J., Le lemme de Morse isochore, Topology 18 (1979) 283-293. | MR | Zbl

[4] Colin De Verdière Y., Vu-Ngoc S., Singular Bohr-Sommerfeld rules for 2D integrable systems, Ann. Scient. Éc. Norm. Sup. 36 (2) (2003) 1-55. | Numdam | MR | Zbl

[5] Currás-Bosch C., unpublished note, 2001.

[6] Currás-Bosch C., Miranda E., Symplectic linearization of singular Lagrangian foliations in M4, Diff. Geom. Appl. 18 (2) (2003) 195-205. | MR | Zbl

[7] Dufour J.-P., Molino P., Compactification d’actions de Rn et variables action-angle avec singularités, in: Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Springer, New York, 1991, pp. 151-167. | MR | Zbl

[8] Eliasson L.H., Hamiltonian systems with Poisson commuting integrals, Ph.D. Thesis, 1984.

[9] Eliasson L.H., Normal forms for Hamiltonian systems with Poisson commuting integrals - elliptic case, Comment. Math. Helv. 65 (1) (1990) 4-35. | MR | Zbl

[10] Guillemin V., Sternberg S., A normal form for the moment map, in: Sternberg S. (Ed.), Differential Geometric Methods in Mathematical Physics, Reidel, Dordrecht, 1984. | MR | Zbl

[11] Ito H., Convergence of Birkhoff normal forms for integrable systems, Comment. Math. Helv. 64 (3) (1989) 412-461. | MR | Zbl

[12] Ito H., Action-angle coordinates at singularities for analytic integrable systems, Math. Z. 206 (3) (1991) 363-407. | MR | Zbl

[13] Liouville J., Note sur l'intégration des équations différentielles de la dynamique, présentée au bureau des longitudes le 29 juin 1853, Journal de Mathématiques pures et appliquées 20 (1855) 137-138.

[14] Marle C.-M., Sous-variétés de rang constant d'une variété symplectique, in: Third Schnepfenried Geometry Conference, vol. 1 (Schnepfenried, 1982), Astérisque, vols. 107-108, Soc. Math. France, Paris, 1983, pp. 69-86. | Numdam | MR | Zbl

[15] Marle C.-M., Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique, Rend. Sem. Mat. Univ. Politec. Torino 43 (2) (1985) 227-251. | MR | Zbl

[16] Mineur H., Sur les systèmes mécaniques admettant n intégrales premières uniformes et l'extension à ces systèmes de la méthode de quantification de Sommerfeld, C. R. Acad. Sci., Paris 200 (1935) 1571-1573. | Zbl

[17] Mineur H., Réduction des systèmes mécaniques à n degré de liberté admettant n intégrales premières uniformes en involution aux systèmes à variables séparées, J. Math. Pure Appl., IX Sér. 15 (1936) 385-389. | JFM | Numdam

[18] Mineur H., Sur les systèmes mécaniques dans lesquels figurent des paramètres fonctions du temps. Étude des systèmes admettant n intégrales premières uniformes en involution. Extension à ces systèmes des conditions de quantification de Bohr-Sommerfeld, Journal de l'École Polytechnique, Série III, 143ème année (1937) 173-191, and 237-270. | Zbl

[19] Miranda E., On symplectic linearization of singular Lagrangian foliations, Ph.D. Thesis, Universitat de Barcelona, 2003.

[20] Palais R.S., On the existence of slices for actions of noncompact Lie groups, Ann. Math. 73 (2) (1961) 295-323. | MR | Zbl

[21] Sevryuk M.B., Invariant sets of degenerate Hamiltonian systems near equilibria, Regul. Chaotic Dyn. 3 (3) (1998) 82-92. | MR | Zbl

[22] Vey J., Sur certains systèmes dynamiques séparables, Amer. J. Math. 100 (3) (1978) 591-614. | MR | Zbl

[23] Weinstein A., Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6 (1971) 329-346. | MR | Zbl

[24] Weinstein A., Lectures on Symplectic Submanifolds, Regional Conference Series in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 1977. | MR | Zbl

[25] Zung Nguyen Tien, Symplectic topology of integrable Hamiltonian systems, I: Arnold-Liouville with singularities, Compos. Math. 101 (2) (1996) 179-215. | Numdam | MR | Zbl

[26] Zung Nguyen Tien, A note on degenerate corank-one singularities of integrable Hamiltonian systems, Comment. Math. Helv. 75 (2) (2000) 271-283. | MR | Zbl

[27] Zung Nguyen Tien, Convergence versus integrability in Birkhoff normal form, math.DS/0104279, Ann. of Math. (2004), in press. | MR | Zbl

  • Alonso, Jaume; Hohloch, Sonja; Palmer, Joseph The twisting index in semitoric systems, Nonlinearity, Volume 38 (2025) no. 3, p. 035018 | DOI:10.1088/1361-6544/adb120
  • Ali, A. Z.; Kibkalo, V. A.; Kudryavtseva, E. A.; Onufrienko, M. V. Bifurcations in Integrable Hamiltonian Systems near Corank-One Singularities, Differential Equations, Volume 60 (2024) no. 10, p. 1311 | DOI:10.1134/s001226612410001x
  • Le Floch, Yohann; Palmer, Joseph Semitoric Families, Memoirs of the American Mathematical Society, Volume 302 (2024) no. 1514 | DOI:10.1090/memo/1514
  • Braddell, Roisin; Kiesenhofer, Anna; Miranda, Eva A bb‐symplectic slice theorem, Bulletin of the London Mathematical Society, Volume 55 (2023) no. 1, p. 90 | DOI:10.1112/blms.12713
  • Brugués, Joaquim; Hohloch, Sonja; Mir, Pau; Miranda, Eva Constructions of b-semitoric systems, Journal of Mathematical Physics, Volume 64 (2023) no. 7 | DOI:10.1063/5.0152551
  • Gazor, Majid; Shoghi, Ahmad Leaf-Normal Form Classification for n-Tuple Hopf Singularities, Communications in Mathematical Physics, Volume 396 (2022) no. 2, p. 481 | DOI:10.1007/s00220-022-04470-2
  • Kudryavtseva, Elena A. Hidden toric symmetry and structural stability of singularities in integrable systems, European Journal of Mathematics, Volume 8 (2022) no. 4, p. 1487 | DOI:10.1007/s40879-021-00501-9
  • Kudryavtseva, E. A.; Oshemkov, A. A. Structurally Stable Nondegenerate Singularities of Integrable Systems, Russian Journal of Mathematical Physics, Volume 29 (2022) no. 1, p. 57 | DOI:10.1134/s106192082201006x
  • Mir, Pau; Miranda, Eva Geometric quantization via cotangent models, Analysis and Mathematical Physics, Volume 11 (2021) no. 3 | DOI:10.1007/s13324-021-00559-4
  • Correa, Eder M.; Grama, Lino Lax formalism for Gelfand-Tsetlin integrable systems, Bulletin des Sciences Mathématiques, Volume 170 (2021), p. 102999 | DOI:10.1016/j.bulsci.2021.102999
  • Pelayo, Álvaro Symplectic invariants of semitoric systems and the inverse problem for quantum systems, Indagationes Mathematicae, Volume 32 (2021) no. 1, p. 246 | DOI:10.1016/j.indag.2020.04.005
  • De Meulenaere, Annelies; Hohloch, Sonja A Family of Semitoric Systems with Four Focus–Focus Singularities and Two Double Pinched Tori, Journal of Nonlinear Science, Volume 31 (2021) no. 4 | DOI:10.1007/s00332-021-09703-7
  • Kudryavtseva, Elena A.; Martynchuk, Nikolay N. Existence of a Smooth Hamiltonian Circle Action near Parabolic Orbits and Cuspidal Tori, Regular and Chaotic Dynamics, Volume 26 (2021) no. 6, p. 732 | DOI:10.1134/s1560354721060101
  • Mir, Pau; Miranda, Eva Rigidity of cotangent lifts and integrable systems, Journal of Geometry and Physics, Volume 157 (2020), p. 103847 | DOI:10.1016/j.geomphys.2020.103847
  • Kudryavtseva, Elena A. Hidden toric symmetry and structural stability of singularities in integrable systems, arXiv (2020) | DOI:10.48550/arxiv.2008.01067 | arXiv:2008.01067
  • Cardona, Robert; Miranda, Eva Integrable systems and closed one forms, Journal of Geometry and Physics, Volume 131 (2018), p. 204 | DOI:10.1016/j.geomphys.2018.05.013
  • Sepe, Daniele; Vũ Ngọc, San Integrable systems, symmetries, and quantization, Letters in Mathematical Physics, Volume 108 (2018) no. 3, p. 499 | DOI:10.1007/s11005-017-1018-z
  • Bouloc, D.; Miranda, E.; Zung, N.T. Singular fibres of the Gelfand–Cetlin system on MANI( n )*, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 376 (2018) no. 2131, p. 20170423 | DOI:10.1098/rsta.2017.0423
  • Bolsinov, Alexey; Guglielmi, Lorenzo; Kudryavtseva, Elena Symplectic invariants for parabolic orbits and cusp singularities of integrable systems, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 376 (2018) no. 2131, p. 20170424 | DOI:10.1098/rsta.2017.0424
  • Bolsinov, Alexey; Matveev, Vladimir S.; Miranda, Eva; Tabachnikov, Serge Open problems, questions and challenges in finite- dimensional integrable systems, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 376 (2018) no. 2131, p. 20170430 | DOI:10.1098/rsta.2017.0430
  • Hohloch, Sonja; Sabatini, Silvia; Sepe, Daniele; Symington, Margaret Faithful Semitoric Systems, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 14 (2018) | DOI:10.3842/sigma.2018.084
  • Kiesenhofer, Anna; Miranda, Eva Cotangent Models for Integrable Systems, Communications in Mathematical Physics, Volume 350 (2017) no. 3, p. 1123 | DOI:10.1007/s00220-016-2720-x
  • Pelayo, Álvaro; Ratiu, Tudor S; Vu Ngọc, San The affine invariant of proper semitoric integrable systems, Nonlinearity, Volume 30 (2017) no. 11, p. 3993 | DOI:10.1088/1361-6544/aa8aec
  • Izosimov, Anton Singularities of Integrable Systems and Algebraic Curves, International Mathematics Research Notices (2016), p. rnw168 | DOI:10.1093/imrn/rnw168
  • Dullin, Holger R.; Pelayo, Álvaro Generating Hyperbolic Singularities in Semitoric Systems Via Hopf Bifurcations, Journal of Nonlinear Science, Volume 26 (2016) no. 3, p. 787 | DOI:10.1007/s00332-016-9290-0
  • Le Floch, Yohann; Pelayo, Álvaro; Vũ Ngọc, San Inverse spectral theory for semiclassical Jaynes–Cummings systems, Mathematische Annalen, Volume 364 (2016) no. 3-4, p. 1393 | DOI:10.1007/s00208-015-1259-z
  • Jiang, Kai Local normal forms of smooth weakly hyperbolic integrable systems, Regular and Chaotic Dynamics, Volume 21 (2016) no. 1, p. 18 | DOI:10.1134/s1560354716010020
  • CURRÁS-BOSCH, CARLOS SINGULAR COTANGENT MODEL, Glasgow Mathematical Journal, Volume 57 (2015) no. 2, p. 415 | DOI:10.1017/s001708951400038x
  • Rosemann, Stefan; Schöbel, Konrad Open problems in the theory of finite-dimensional integrable systems and related fields, Journal of Geometry and Physics, Volume 87 (2015), p. 396 | DOI:10.1016/j.geomphys.2014.07.016
  • Guillemin, Victor; Miranda, Eva; Pires, Ana Rita Symplectic and Poisson geometry on b-manifolds, Advances in Mathematics, Volume 264 (2014), p. 864 | DOI:10.1016/j.aim.2014.07.032
  • Bolsinov, Alexey; Izosimov, Anton Singularities of Bi-Hamiltonian Systems, Communications in Mathematical Physics, Volume 331 (2014) no. 2, p. 507 | DOI:10.1007/s00220-014-2048-3
  • VAN MINH, Nguyen; ZUNG, Nguyen Tien Geometry of nondegenerate Rn-actions on n-manifolds, Journal of the Mathematical Society of Japan, Volume 66 (2014) no. 3 | DOI:10.2969/jmsj/06630839
  • Vũ Ngọc, San; Wacheux, Christophe Smooth normal forms for integrable Hamiltonian systems near a focus–focus singularity, Acta Mathematica Vietnamica, Volume 38 (2013) no. 1, p. 107 | DOI:10.1007/s40306-013-0012-5
  • Miranda, Eva; Solha, Romero A Poincaré lemma in geometric quantisation, Journal of Geometric Mechanics, Volume 5 (2013) no. 4, p. 473 | DOI:10.3934/jgm.2013.5.473
  • Ryabov, Pavel E; Kharlamov, Mikhail P Classification of singularities in the problem of motion of the Kovalevskaya top in a double force field, Sbornik: Mathematics, Volume 203 (2012) no. 2, p. 257 | DOI:10.1070/sm2012v203n02abeh004222
  • Рябов, Павел Евгеньевич; Ryabov, Pavel Evgen'evich; Харламов, Михаил Павлович; Kharlamov, Mikhail Pavlovich Классификация особенностей в задаче о движении волчка Ковалевской в двойном поле сил, Математический сборник, Volume 203 (2012) no. 2, p. 111 | DOI:10.4213/sm7758
  • Pelayo, Álvaro; Vũ Ngọc, San Constructing integrable systems of semitoric type, Acta Mathematica, Volume 206 (2011) no. 1, p. 93 | DOI:10.1007/s11511-011-0060-4
  • Болсинов, Алексей Викторович; Bolsinov, Aleksei Viktorovich; Болсинов, Алексей Викторович; Bolsinov, Aleksei Viktorovich; Борисов, Алексей Владимирович; Borisov, Alexey Vladimirovich; Мамаев, Иван Сергеевич; Mamaev, Ivan Sergeevich Топология и устойчивость интегрируемых систем, Успехи математических наук, Volume 65 (2010) no. 2, p. 71 | DOI:10.4213/rm9346
  • ITO, HIDEKAZU Birkhoff normalization and superintegrability of Hamiltonian systems, Ergodic Theory and Dynamical Systems, Volume 29 (2009) no. 6, p. 1853 | DOI:10.1017/s0143385708000965
  • Pelayo, Alvaro; Vũ Ngọc, San Semitoric integrable systems on symplectic 4-manifolds, Inventiones mathematicae, Volume 177 (2009) no. 3, p. 571 | DOI:10.1007/s00222-009-0190-x
  • Miranda, Eva Symmetries and singularities in Hamiltonian systems, Journal of Physics: Conference Series, Volume 175 (2009), p. 012011 | DOI:10.1088/1742-6596/175/1/012011
  • Zung, N. T. Kolmogorov condition near hyperbolic singularities of integrable Hamiltonian systems, Regular and Chaotic Dynamics, Volume 12 (2007) no. 6, p. 680 | DOI:10.1134/s156035470706010x
  • Dullin, H. R.; Vũ Ngọc, S. Symplectic invariants near hyperbolic-hyperbolic points, Regular and Chaotic Dynamics, Volume 12 (2007) no. 6, p. 689 | DOI:10.1134/s1560354707060111
  • Castano-Bernard, R.; Matessi, D. Lagrangian 3-torus fibrations, arXiv (2006) | DOI:10.48550/arxiv.math/0611139 | arXiv:math/0611139
  • Foxman, J A; Robbins, J M The Maslov index and nondegenerate singularities of integrable systems, Nonlinearity, Volume 18 (2005) no. 6, p. 2775 | DOI:10.1088/0951-7715/18/6/019

Cité par 45 documents. Sources : Crossref, NASA ADS