@article{ASENS_2004_4_37_4_507_0, author = {Mendes Lopes, Margarida and Pardini, Rita}, title = {A new family of surfaces with ${p}_{g}=0$ and ${K}^{2}=3$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {507--531}, publisher = {Elsevier}, volume = {Ser. 4, 37}, number = {4}, year = {2004}, doi = {10.1016/j.ansens.2004.04.001}, mrnumber = {2097891}, zbl = {1078.14054}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.ansens.2004.04.001/} }
TY - JOUR AU - Mendes Lopes, Margarida AU - Pardini, Rita TI - A new family of surfaces with ${p}_{g}=0$ and ${K}^{2}=3$ JO - Annales scientifiques de l'École Normale Supérieure PY - 2004 SP - 507 EP - 531 VL - 37 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.ansens.2004.04.001/ DO - 10.1016/j.ansens.2004.04.001 LA - en ID - ASENS_2004_4_37_4_507_0 ER -
%0 Journal Article %A Mendes Lopes, Margarida %A Pardini, Rita %T A new family of surfaces with ${p}_{g}=0$ and ${K}^{2}=3$ %J Annales scientifiques de l'École Normale Supérieure %D 2004 %P 507-531 %V 37 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.ansens.2004.04.001/ %R 10.1016/j.ansens.2004.04.001 %G en %F ASENS_2004_4_37_4_507_0
Mendes Lopes, Margarida; Pardini, Rita. A new family of surfaces with ${p}_{g}=0$ and ${K}^{2}=3$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 37 (2004) no. 4, pp. 507-531. doi : 10.1016/j.ansens.2004.04.001. https://www.numdam.org/articles/10.1016/j.ansens.2004.04.001/
[1] Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 4, Springer-Verlag, Berlin, 1984. | MR | Zbl
, , ,
[2] Sur le nombre maximum de points doubles d’une surface dans
[3] Sur les surfaces de genre
[4] Local contributions to global deformations of surfaces, Invent. Math. 26 (1974) 67-88. | EuDML | MR | Zbl
, ,[5] Singular bidouble covers and the construction of interesting algebraic surfaces, in: Algebraic Geometry: Hirzebruch 70, Contemporary Mathematics, vol. 241, American Mathematical Society, 1999, pp. 97-120. | MR | Zbl
,
[6] Surfaces with
[7] Projective models of Enriques Surfaces, Math. Ann. 265 (1983) 283-334. | EuDML | MR | Zbl
,[8] Enriques Surfaces I, Progress in Mathematics, vol. 76, Birkhäuser, 1989. | MR | Zbl
, ,[9] Rational surfaces with many nodes, Compositio Math. 132 (3) (2002) 349-363. | MR | Zbl
, , ,[10] Grothendieck A., Fondements de la géométrie algébrique, exposés 232, 236, collected Bourbaki talks, Paris, 1962.
[11] Some new surfaces of general type, Tokyo J. Math. 17 (2) (1994) 295-319. | MR | Zbl
,
[12] Keum J.H., Some new surfaces of general type with
[13] Introduction to Coding Theory, Graduate Texts in Mathematics, vol. 86, Springer-Verlag, Berlin, 1992. | MR | Zbl
,[14] Manetti M., Degeneration of algebraic surfaces and applications to moduli problems, Tesi di Perfezionamento, Scuola Normale Superiore, Pisa, 1996.
[15] The bicanonical map of surfaces with
[16] A connected component of the moduli space of surfaces of general type with
[17] Enriques surfaces with eight nodes, Math. Z. 241 (2002) 673-683. | MR | Zbl
, ,
[18] The bicanonical map of surfaces with
[19] On the moduli of Todorov surfaces, in: Algebraic Geometry and Commutative Algebra, vol. I, Kinokuniya, Tokyo, 1988, pp. 313-355. | MR | Zbl
,[20] Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, vol. 34, Springer-Verlag, Berlin, 1965. | MR | Zbl
,
[21] Surfaces d’Enriques et une construction de surfaces de type général avec
[22] The classification of double planes of general type with
[23] The classification of double planes of general type with
[24] On certain examples of surfaces with
[25] Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math. 127 (1988) 309-316. | MR | Zbl
,
[26] A construction of surfaces with
[27] Finitude de l'application bicanonique des surfaces de type général, Bull. Soc. Math. France 113 (1985) 23-51. | Numdam | MR | Zbl
,[28] Degree of the bicanonical map of a surface of general type, Amer. J. Math. 112 (5) (1990) 713-737. | MR | Zbl
,Cité par Sources :