@article{ASENS_2002_4_35_6_877_0, author = {Zwara, Grzegorz}, title = {Unibranch orbit closures in module varieties}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {877--895}, publisher = {Elsevier}, volume = {Ser. 4, 35}, number = {6}, year = {2002}, doi = {10.1016/s0012-9593(02)01110-2}, mrnumber = {1949357}, zbl = {1059.16008}, language = {en}, url = {https://www.numdam.org/articles/10.1016/s0012-9593(02)01110-2/} }
TY - JOUR AU - Zwara, Grzegorz TI - Unibranch orbit closures in module varieties JO - Annales scientifiques de l'École Normale Supérieure PY - 2002 SP - 877 EP - 895 VL - 35 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/s0012-9593(02)01110-2/ DO - 10.1016/s0012-9593(02)01110-2 LA - en ID - ASENS_2002_4_35_6_877_0 ER -
%0 Journal Article %A Zwara, Grzegorz %T Unibranch orbit closures in module varieties %J Annales scientifiques de l'École Normale Supérieure %D 2002 %P 877-895 %V 35 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/s0012-9593(02)01110-2/ %R 10.1016/s0012-9593(02)01110-2 %G en %F ASENS_2002_4_35_6_877_0
Zwara, Grzegorz. Unibranch orbit closures in module varieties. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 35 (2002) no. 6, pp. 877-895. doi : 10.1016/s0012-9593(02)01110-2. https://www.numdam.org/articles/10.1016/s0012-9593(02)01110-2/
[1] Normality of orbit closures for Dynkin quivers of type An, Manuscr. Math. 105 (2001) 103-109. | MR | Zbl
, ,[2] A generalization of a theorem of M. Auslander, Bull. London Math. Soc. 21 (1989) 255-256. | MR | Zbl
,[3] Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv. 63 (1994) 575-611. | MR | Zbl
,[4] On degenerations and extensions of finite dimensional modules, Advances Math. 121 (1996) 245-287. | MR | Zbl
,[5] Quivers, desingularizations and canonical bases, Preprint, . | MR
,[6] Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., 1099, Springer-Verlag, 1984. | MR | Zbl
,[7] Degenerations of finite dimensional modules are given by extensions, Compositio Math. 121 (2000) 205-218. | MR | Zbl
,[8] Smooth morphisms of module schemes, Proc. London Math. Soc. 84 (2002) 539-558. | MR | Zbl
,- On Quiver Grassmannians and Orbit Closures for Gen-Finite Modules, Algebras and Representation Theory, Volume 25 (2022) no. 2, p. 413 | DOI:10.1007/s10468-021-10028-y
- On Regularity in Codimension One of Irreducible Components of Module Varieties, Algebras and Representation Theory, Volume 15 (2012) no. 5, p. 921 | DOI:10.1007/s10468-011-9270-x
- ON THE GEOMETRY OF ORBIT CLOSURES FOR REPRESENTATION-INFINITE ALGEBRAS, Glasgow Mathematical Journal, Volume 54 (2012) no. 3, p. 629 | DOI:10.1017/s0017089512000213
- Codimension two singularities for representations of extended Dynkin quivers, manuscripta mathematica, Volume 123 (2007) no. 3, p. 237 | DOI:10.1007/s00229-007-0093-3
- Normality of orbit closures for directing modules over tame algebras, Journal of Algebra, Volume 298 (2006) no. 1, p. 120 | DOI:10.1016/j.jalgebra.2005.06.023
- Regularity in codimension one of orbit closures in module varieties, Journal of Algebra, Volume 283 (2005) no. 2, p. 821 | DOI:10.1016/j.jalgebra.2004.09.021
- Orbit closures for representations of Dynkin quivers are regular in codimension two, Journal of the Mathematical Society of Japan, Volume 57 (2005) no. 3 | DOI:10.2969/jmsj/1158241938
Cité par 7 documents. Sources : Crossref