Skein quantization of Poisson algebras of loops on surfaces
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 24 (1991) no. 6, pp. 635-704.
@article{ASENS_1991_4_24_6_635_0,
     author = {Turaev, Vladimir G.},
     title = {Skein quantization of {Poisson} algebras of loops on surfaces},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {635--704},
     publisher = {Elsevier},
     volume = {Ser. 4, 24},
     number = {6},
     year = {1991},
     doi = {10.24033/asens.1639},
     mrnumber = {94a:57023},
     zbl = {0758.57011},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.1639/}
}
TY  - JOUR
AU  - Turaev, Vladimir G.
TI  - Skein quantization of Poisson algebras of loops on surfaces
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1991
SP  - 635
EP  - 704
VL  - 24
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.24033/asens.1639/
DO  - 10.24033/asens.1639
LA  - en
ID  - ASENS_1991_4_24_6_635_0
ER  - 
%0 Journal Article
%A Turaev, Vladimir G.
%T Skein quantization of Poisson algebras of loops on surfaces
%J Annales scientifiques de l'École Normale Supérieure
%D 1991
%P 635-704
%V 24
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.24033/asens.1639/
%R 10.24033/asens.1639
%G en
%F ASENS_1991_4_24_6_635_0
Turaev, Vladimir G. Skein quantization of Poisson algebras of loops on surfaces. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 24 (1991) no. 6, pp. 635-704. doi : 10.24033/asens.1639. https://www.numdam.org/articles/10.24033/asens.1639/

[1] V. G. Drinfeld, Hamiltonian Structures on Lie Groups, Lie Bialgebras and the Meaning of the classical Yang-Baxter Equation (Doklady A.N. S.S.S.R., Vol. 268, 1982, pp. 285-287 ; English translation : Soviet Math. Dokl., Vol. 27, No. 1, 1983). | MR | Zbl

[2] V. G. Drinfeld, Quantum Groups (Proc. Internat. Congress Math., Berkeley, 1986, Amer. Math. Soc., Providence, R.I., 1987, pp. 798-820). | MR | Zbl

[3] W. M. Goldman, The Symplectic Nature of Fundamental Groups of Surfaces (Adv. Math., Vol. 54, 1984, pp. 200-225). | MR | Zbl

[4] W. M. Goldman, Invariant Functions on Lie Groups and Hamiltonian Flows of Surface Group Representations (Invent. Math., Vol. 85, 1986, pp. 263-302). | MR | Zbl

[5] J. Hoste and M. K. Kidwell, Dichromatic Link Invariants, (Trans. Amer. Math. Soc., Vol. 321, 1990, pp. 197-229). | MR | Zbl

[6] F. Jaeger, Composition Products and Models for the Homfly Polynomial, preprint, Grenoble, 1988.

[7] L. H. Kauffman, New Invariants in the Theory of Knots (Am. Math. Mon., Vol. 95, 1988, pp. 195-242). | MR | Zbl

[8] M. Kontsevich, Rational Conformal Field Theory and Invariants of 3-Manifolds, preprint, 1989.

[9] W. B. R. Lickorish, Polynomials for Links (Bull. London Math. Soc., Vol. 20, 1988, pp. 558-588). | MR | Zbl

[10] W. B. R. Lickorish and K. C. Millett, A Polynomial Invariant of Oriented Links (Topology, Vol. 26, 1987, pp. 107-141). | MR | Zbl

[11] J. H. Przytycki, Skein Modules of 3-manifolds, preprint, 1987.

[12] N. Y. Reshetikhin, Quantized Universal Enveloping Algebras, the Yang-Baxter Equation and Invariants of Links, I and II, L.O.M.I. preprints E-4-87 and E-17-87, Leningrad, 1988.

[13] N. Y. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via Link Polynomials and Quantum Groups, (Invent. Math., Vol. 103, 1991, pp. 547-597). | MR | Zbl

[14] M. A. Semenov-Tian-Shansky, Dressing Transformations and Poisson Group Actions (Publ. Res. Inst. Math. Sci. Kyoto Univ., Vol. 21, 1985, pp. 1237-1260). | MR | Zbl

[15] J.-P. Serre, Lie Algebras and Lie Groups, Benjamin, New York-Amsterdam, 1965. | MR | Zbl

[16] V. G. Turaev, Intersections of Loops in Two-Dimensional Manifolds (Matem. Sbornik, Vol. 106, 1978, pp. 566-588 ; English translation : Math. U.S.S.R. Sbornik, Vol. 35, 1979, pp. 229-250). | MR | Zbl

[17] V. G. Turaev, Multivariable Generalizations of the Seifert form of Classical Knot (Matem. Sbornik, Vol. 116, 1981, pp. 370-397 ; English translation : Math. U.S.S.R. Sbornik, (Vol. 44, 1983, pp. 335-361). | Zbl

[18] V. G. Turaev, The Yang-Baxter Equation and Invariants of Links (Invent. Math., Vol. 92, 1988, pp. 527-553). | MR | Zbl

[19] V. G. Turaev, The Conway and Kauffman Modules of the Solid Torus (Zap. nauchn. sem. L.O.M.I., Vol. 167, 1988, pp. 79-89 ; English translation : J. Soviet. Math.). | MR | Zbl

[20] V. G. Turaev, Algebras of Loops on Surfaces, Algebras of Knots and Quantization, preprint L.O.M.I., Leningrad, 1988.

[21] J.-L. Verdier, Groupes quantiques (d'après V. G. Drinfel'd) (Astérisque, Vol. 152-153, 1987, pp. 305-319). | Numdam | MR | Zbl

[22] E. Witten, Quantum Field Theory and the Jones Polynomial, (Comm. Math. Phys., Vol. 121, 1989, pp. 351-399). | MR | Zbl

[23] S. Wolpert, On the Symplectic Geometry of Deformations of Hyperbolic Surface (Ann. Math., Vol. 117, 1983, pp. 207-234). | MR | Zbl

  • Jordan, David Quantum Character Varieties, Encyclopedia of Mathematical Physics (2025), p. 635 | DOI:10.1016/b978-0-323-95703-8.00015-x
  • Detcherry, Renaud; Santharoubane, Ramanujan An embedding of skein algebras of surfaces into localized quantum tori from Dehn–Thurston coordinates, Geometry Topology, Volume 29 (2025) no. 1, p. 313 | DOI:10.2140/gt.2025.29.313
  • Ishibashi, Tsukasa; Kano, Shunsuke; Yuasa, Wataru Skein and Cluster Algebras with Coefficients for Unpunctured Surfaces, International Mathematics Research Notices, Volume 2025 (2025) no. 4 | DOI:10.1093/imrn/rnaf024
  • Hikami, Kazuhiro A note on double affine Hecke algebra for skein algebra on twice-punctured torus, Journal of Geometry and Physics, Volume 209 (2025), p. 105408 | DOI:10.1016/j.geomphys.2024.105408
  • Arthamonov, S. Classical limit of genus two DAHA, Selecta Mathematica, Volume 31 (2025) no. 1 | DOI:10.1007/s00029-024-01009-2
  • Alekseev, Anton; Naef, Florian; Pulmann, Ján; Ševera, Pavol Batalin-Vilkovisky structures on moduli spaces of flat connections, Advances in Mathematics, Volume 443 (2024), p. 109580 | DOI:10.1016/j.aim.2024.109580
  • Korinman, Julien; Quesney, Alexandre Classical shadows of stated skein representations at roots of unity, Algebraic Geometric Topology, Volume 24 (2024) no. 4, p. 2091 | DOI:10.2140/agt.2024.24.2091
  • Queffelec, Hoel; Wedrich, Paul Extremal weight projectors II, 𝔤𝔩 N case, Algebraic Combinatorics, Volume 7 (2024) no. 1, p. 187 | DOI:10.5802/alco.330
  • Przytycki, Józef H.; Bakshi, Rhea Palak; Ibarra, Dionne; Montoya-Vega, Gabriel; Weeks, Deborah Basics of Skein Modules, Lectures in Knot Theory (2024), p. 205 | DOI:10.1007/978-3-031-40044-5_11
  • Cooke, Juliet Excision of skein categories and factorisation homology, Advances in Mathematics, Volume 414 (2023), p. 108848 | DOI:10.1016/j.aim.2022.108848
  • Korinman, Julien Finite presentations for stated skein algebras and lattice gauge field theory, Algebraic Geometric Topology, Volume 23 (2023) no. 3, p. 1249 | DOI:10.2140/agt.2023.23.1249
  • Boden, Hans U; Karimi, Homayun; Sikora, Adam S Adequate links in thickened surfaces and the generalized Tait conjectures, Algebraic Geometric Topology, Volume 23 (2023) no. 5, p. 2271 | DOI:10.2140/agt.2023.23.2271
  • Bousseau, Pierrick Strong Positivity for the Skein Algebras of the 4-Punctured Sphere and of the 1-Punctured Torus, Communications in Mathematical Physics, Volume 398 (2023) no. 1, p. 1 | DOI:10.1007/s00220-022-04512-9
  • Chor, Arnon; Meiwes, Matthias Hofer's geometry and topological entropy, Compositio Mathematica, Volume 159 (2023) no. 6, p. 1250 | DOI:10.1112/s0010437x23007169
  • Alonso, Juan; Paternain, Miguel; Peraza, Javier; Reisenberger, Michael Lie algebras of curves and loop-bundles on surfaces, Geometriae Dedicata, Volume 217 (2023) no. 4 | DOI:10.1007/s10711-023-00802-1
  • Morrison, Scott; Walker, Kevin; Wedrich, Paul Invariants of 4–manifolds from Khovanov–Rozansky link homology, Geometry Topology, Volume 26 (2023) no. 8, p. 3367 | DOI:10.2140/gt.2022.26.3367
  • Merkulov, Sergei Prop of Ribbon Hypergraphs and Strongly Homotopy Involutive Lie Bialgebras, International Mathematics Research Notices, Volume 2023 (2023) no. 7, p. 5685 | DOI:10.1093/imrn/rnac023
  • Gunningham, Sam; Jordan, David; Safronov, Pavel The finiteness conjecture for skein modules, Inventiones mathematicae, Volume 232 (2023) no. 1, p. 301 | DOI:10.1007/s00222-022-01167-0
  • Turaev, Vladimir Quasi-Lie bialgebras of loops in quasisurfaces, Kyoto Journal of Mathematics, Volume 63 (2023) no. 1 | DOI:10.1215/21562261-2022-0034
  • Paul, Thierry Species of Spaces, Theoretical Physics, Wavelets, Analysis, Genomics (2023), p. 307 | DOI:10.1007/978-3-030-45847-8_16
  • Miura, Go; Suzuki, Sakie The skein algebra of the Borromean rings complement, International Journal of Mathematics, Volume 33 (2022) no. 08 | DOI:10.1142/s0129167x22500495
  • Tarkaev, V. V. On the Sharpness of Some Lower Bounds for the Crossing Number of Links in Thickened Surfaces, Siberian Mathematical Journal, Volume 63 (2022) no. 6, p. 1153 | DOI:10.1134/s0037446622060143
  • Turaev, Vladimir Topological constructions of tensor fields on moduli spaces, Advances in Mathematics, Volume 392 (2021), p. 107998 | DOI:10.1016/j.aim.2021.107998
  • Arthamonov, S.; Reshetikhin, N. Superintegrable Systems on Moduli Spaces of Flat Connections, Communications in Mathematical Physics, Volume 386 (2021) no. 3, p. 1337 | DOI:10.1007/s00220-021-04128-5
  • Karuo, Hiroaki Kauffman bracket skein module of the connected sum of handlebodies and non-injectivity, International Journal of Mathematics, Volume 32 (2021) no. 07, p. 2150042 | DOI:10.1142/s0129167x21500427
  • Marché, Julien The Kauffman Skein Module at 1st Order, International Mathematics Research Notices, Volume 2021 (2021) no. 22, p. 17413 | DOI:10.1093/imrn/rnz289
  • Kaiser, Uwe Homflypt skein theory, string topology and 2-categories, Journal of Knot Theory and Its Ramifications, Volume 30 (2021) no. 13 | DOI:10.1142/s021821652141008x
  • Crampé, Nicolas; Frappat, Luc; Gaboriaud, Julien; Poulain d’Andecy, Loïc; Ragoucy, Eric; Vinet, Luc The Askey–Wilson algebra and its avatars, Journal of Physics A: Mathematical and Theoretical, Volume 54 (2021) no. 6, p. 063001 | DOI:10.1088/1751-8121/abd783
  • Berest, Yuri; Gallagher, Joseph; Samuelson, Peter Cyclotomic expansion of generalized Jones polynomials, Letters in Mathematical Physics, Volume 111 (2021) no. 2 | DOI:10.1007/s11005-021-01373-6
  • Haiden, Fabian Legendrian skein algebras and Hall algebras, Mathematische Annalen, Volume 381 (2021) no. 1-2, p. 631 | DOI:10.1007/s00208-021-02212-8
  • Turaev, Vladimir Loops in Surfaces and Star-Fillings, Representation Theory, Mathematical Physics, and Integrable Systems, Volume 340 (2021), p. 617 | DOI:10.1007/978-3-030-78148-4_21
  • Paul, Thierry Symbolic Calculus for Singular Curve Operators, Schrödinger Operators, Spectral Analysis and Number Theory, Volume 348 (2021), p. 195 | DOI:10.1007/978-3-030-68490-7_10
  • Frohman, Charles; Kania-Bartoszynska, Joanna; Lê, Thang Dimension and Trace of the Kauffman Bracket Skein Algebra, Transactions of the American Mathematical Society, Series B, Volume 8 (2021) no. 18, p. 510 | DOI:10.1090/btran/69
  • Hain, Richard Hodge theory of the Goldman bracket, Geometry Topology, Volume 24 (2020) no. 4, p. 1841 | DOI:10.2140/gt.2020.24.1841
  • Chernov, Vladimir; Freund, David; Sadykov, Rustam Minimizing intersection points of curves under virtual homotopy, Journal of Knot Theory and Its Ramifications, Volume 29 (2020) no. 03, p. 2050007 | DOI:10.1142/s0218216520500078
  • Arai, Masafumi; Taniyama, Kouki Knot diagrams on a punctured sphere as a model of string figures, Journal of Knot Theory and Its Ramifications, Volume 29 (2020) no. 11, p. 2050071 | DOI:10.1142/s0218216520500716
  • Cooper, Benjamin; Samuelson, Peter THE HALL ALGEBRAS OF SURFACES I, Journal of the Institute of Mathematics of Jussieu, Volume 19 (2020) no. 3, p. 971 | DOI:10.1017/s1474748018000324
  • Lê, Thang; Paprocki, Jonathan On Kauffman bracket skein modules of marked 3–manifolds and the Chebyshev–Frobenius homomorphism, Algebraic Geometric Topology, Volume 19 (2019) no. 7, p. 3453 | DOI:10.2140/agt.2019.19.3453
  • Frohman, Charles; Kania-Bartoszynska, Joanna; Lê, Thang Unicity for representations of the Kauffman bracket skein algebra, Inventiones mathematicae, Volume 215 (2019) no. 2, p. 609 | DOI:10.1007/s00222-018-0833-x
  • Queffelec, Hoel; Sartori, Antonio Mixed quantum skew Howe duality and link invariants of type A, Journal of Pure and Applied Algebra, Volume 223 (2019) no. 7, p. 2733 | DOI:10.1016/j.jpaa.2018.09.014
  • Lê, Thang T. Q. QUANTUM TEICHMÜLLER SPACES AND QUANTUM TRACE MAP, Journal of the Institute of Mathematics of Jussieu, Volume 18 (2019) no. 2, p. 249 | DOI:10.1017/s1474748017000068
  • Yalin, Sinan Moduli Spaces of (Bi)algebra Structures in Topology and Geometry, 2016 MATRIX Annals, Volume 1 (2018), p. 439 | DOI:10.1007/978-3-319-72299-3_20
  • Alekseev, Anton; Kawazumi, Nariya; Kuno, Yusuke; Naef, Florian The Goldman–Turaev Lie bialgebra in genus zero and the Kashiwara–Vergne problem, Advances in Mathematics, Volume 326 (2018), p. 1 | DOI:10.1016/j.aim.2017.12.005
  • Schmidtt, David M. Lambda models from Chern-Simons theories, Journal of High Energy Physics, Volume 2018 (2018) no. 11 | DOI:10.1007/jhep11(2018)111
  • Tarkaev, V. V. A Lower Bound for the Crossing Number of Links in Thickened Surfaces, Siberian Mathematical Journal, Volume 59 (2018) no. 6, p. 1125 | DOI:10.1134/s0037446618060150
  • Bonahon, Francis; Wong, Helen Representations of the Kauffman bracket skein algebra, II: Punctured surfaces, Algebraic Geometric Topology, Volume 17 (2017) no. 6, p. 3399 | DOI:10.2140/agt.2017.17.3399
  • Cahn, Patricia A generalization of Turaev’s virtual string cobracket and self-intersections of virtual strings, Communications in Contemporary Mathematics, Volume 19 (2017) no. 04, p. 1650053 | DOI:10.1142/s021919971650053x
  • Tsuji, Shunsuke The quotient of a Kauffman bracket skein algebra by the square of an augmentation ideal, Journal of Knot Theory and Its Ramifications, Volume 26 (2017) no. 05, p. 1750030 | DOI:10.1142/s0218216517500304
  • Yalin, Sinan Function spaces and classifying spaces of algebras over a prop, Algebraic Geometric Topology, Volume 16 (2016) no. 5, p. 2715 | DOI:10.2140/agt.2016.16.2715
  • Kabiraj, Arpan Center of the Goldman Lie algebra, Algebraic Geometric Topology, Volume 16 (2016) no. 5, p. 2839 | DOI:10.2140/agt.2016.16.2839
  • Alekseev, Anton; Kawazumi, Nariya; Kuno, Yusuke; Naef, Florian Higher genus Kashiwara–Vergne problems and the Goldman–Turaev Lie bialgebra, Comptes Rendus. Mathématique, Volume 355 (2016) no. 2, p. 123 | DOI:10.1016/j.crma.2016.12.007
  • Campos, Ricardo; Merkulov, Sergei; Willwacher, Thomas The Frobenius properad is Koszul, Duke Mathematical Journal, Volume 165 (2016) no. 15 | DOI:10.1215/00127094-3645116
  • Detcherry, Renaud Asymptotic formulae for curve operators in TQFT, Geometry Topology, Volume 20 (2016) no. 6, p. 3057 | DOI:10.2140/gt.2016.20.3057
  • Boggi, Marco; Zalesskii, Pavel Characterizing Closed Curves on Riemann Surfaces via Homology Groups of Coverings, International Mathematics Research Notices (2016), p. rnv380 | DOI:10.1093/imrn/rnv380
  • Lê, Thang T. Q. On Positivity of Kauffman Bracket Skein Algebras of Surfaces, International Mathematics Research Notices (2016), p. rnw280 | DOI:10.1093/imrn/rnw280
  • Bobb, Martin; Peifer, Dylan; Kennedy, Stephen; Wong, Helen Presentations of Roger and Yang’s Kauffman bracket arc algebra, Involve, a Journal of Mathematics, Volume 9 (2016) no. 4, p. 689 | DOI:10.2140/involve.2016.9.689
  • Chowdhury, S. Hasibul Hassan On Goldman bracket for G 2 gauge group, Journal of High Energy Physics, Volume 2016 (2016) no. 2 | DOI:10.1007/jhep02(2016)001
  • Bobb, Martin; Kennedy, Stephen; Wong, Helen; Peifer, Dylan Roger and Yang’s Kauffman bracket arc algebra is finitely generated, Journal of Knot Theory and Its Ramifications, Volume 25 (2016) no. 06, p. 1650034 | DOI:10.1142/s0218216516500346
  • Markarian, Nikita Weyl n-algebras and the Kontsevich integral of the unknot, Journal of Knot Theory and Its Ramifications, Volume 25 (2016) no. 12, p. 1642008 | DOI:10.1142/s0218216516420086
  • Chas, Moira; Krongold, Fabiana Algebraic characterization of simple closed curves via Turaev's cobracket, Journal of Topology, Volume 9 (2016) no. 1, p. 91 | DOI:10.1112/jtopol/jtv036
  • Costantino, Francesco Notes on Topological Quantum Field Theories, Winter Braids Lecture Notes, Volume 2 (2016), p. 1 | DOI:10.5802/wbln.7
  • Lê, Thang On Kauffman bracket skein modules at roots of unity, Algebraic Geometric Topology, Volume 15 (2015) no. 2, p. 1093 | DOI:10.2140/agt.2015.15.1093
  • Mathews, Daniel V; Schoenfeld, Eric Dimensionally reduced sutured Floer homology as a string homology, Algebraic Geometric Topology, Volume 15 (2015) no. 2, p. 691 | DOI:10.2140/agt.2015.15.691
  • Manturov, V. O. Monodromy, groups, and picture-valued invariants of link, Doklady Mathematics, Volume 91 (2015) no. 3, p. 376 | DOI:10.1134/s1064562415030333
  • Coman, Ioana; Gabella, Maxime; Teschner, Jörg Line operators in theories of class S S , quantized moduli space of flat connections, and Toda field theory, Journal of High Energy Physics, Volume 2015 (2015) no. 10 | DOI:10.1007/jhep10(2015)143
  • Manturov, V. O.; Fedoseev, D. A. Invariants of Homotopy Classes of Curves and Graphs on 2-Surfaces, Journal of Mathematical Sciences, Volume 206 (2015) no. 6, p. 668 | DOI:10.1007/s10958-015-2343-3
  • Nekrasov, N. A.; Rosly, A. A.; Shatashvili, S. L. Darboux coordinates, Yang-Yang functional, and gauge theory, Theoretical and Mathematical Physics, Volume 181 (2014) no. 1, p. 1206 | DOI:10.1007/s11232-014-0209-3
  • Marché, Julien; Paul, Thierry Toeplitz operators in TQFT via skein theory, Transactions of the American Mathematical Society, Volume 367 (2014) no. 5, p. 3669 | DOI:10.1090/s0002-9947-2014-06322-8
  • Некрасов, Никита Александрович; Nekrasov, Nikita Alexandrovich; Рослый, Алексей Андреевич; Roslyi, Aleksei Andreevich; Шаташвили, Самсон Лулиевич; Shatashvili, Samson Lulievich Координаты Дарбу, функционал Янга - Янга и калибровочная теория, Теоретическая и математическая физика, Volume 181 (2014) no. 1, p. 86 | DOI:10.4213/tmf8648
  • ASSELMEYER-MALUGA, TORSTEN; KRÓL, JERZY QUANTUM GEOMETRY AND WILD EMBEDDINGS AS QUANTUM STATES, International Journal of Geometric Methods in Modern Physics, Volume 10 (2013) no. 10, p. 1350055 | DOI:10.1142/s0219887813500552
  • Wu, Hao Colored Morton–Franks–Williams Inequalities, International Mathematics Research Notices, Volume 2013 (2013) no. 20, p. 4734 | DOI:10.1093/imrn/rns184
  • Dimofte, Tudor; Gukov, Sergei Chern-Simons theory and S-duality, Journal of High Energy Physics, Volume 2013 (2013) no. 5 | DOI:10.1007/jhep05(2013)109
  • Ilyutko, D. P.; Manturov, V. O.; Nikonov, I. M. Parity in knot theory and graph-links, Journal of Mathematical Sciences, Volume 193 (2013) no. 6, p. 809 | DOI:10.1007/s10958-013-1499-y
  • ASSELMEYER-MALUGA, TORSTEN; KRÓL, JERZY DECOHERENCE IN QUANTUM COSMOLOGY AND THE COSMOLOGICAL CONSTANT, Modern Physics Letters A, Volume 28 (2013) no. 34, p. 1350158 | DOI:10.1142/s0217732313501587
  • Le, Thang; Tran, Anh The Kauffman bracket skein module of two-bridge links, Proceedings of the American Mathematical Society, Volume 142 (2013) no. 3, p. 1045 | DOI:10.1090/s0002-9939-2013-11835-6
  • Chen, Xiaojun; Eshmatov, Farkhod; Gan, Wee Liang Quantization of the Lie Bialgebra of String Topology, Communications in Mathematical Physics, Volume 301 (2011) no. 1, p. 37 | DOI:10.1007/s00220-010-1139-z
  • Nelson, J. E.; Picken, R. F. Quantum geometry from 2 + 1 AdS quantum gravity on the torus, General Relativity and Gravitation, Volume 43 (2011) no. 3, p. 777 | DOI:10.1007/s10714-010-1095-0
  • Bonahon, Francis; Wong, Helen Quantum traces for representations of surface groups in SL2(ℂ), Geometry Topology, Volume 15 (2011) no. 3, p. 1569 | DOI:10.2140/gt.2011.15.1569
  • Marché, Julien The Kauffman skein algebra of a surface at 1, Mathematische Annalen, Volume 351 (2011) no. 2, p. 347 | DOI:10.1007/s00208-010-0600-9
  • Nekrasov, N.; Rosly, A.; Shatashvili, S. Darboux coordinates, Yang-Yang functional, and gauge theory, Nuclear Physics B - Proceedings Supplements, Volume 216 (2011) no. 1, p. 69 | DOI:10.1016/j.nuclphysbps.2011.04.150
  • Manturov, V. O.; Manturov, O. V. Free knots and groups, Doklady Mathematics, Volume 82 (2010) no. 2, p. 697 | DOI:10.1134/s1064562410050054
  • CHAS, MOIRA; KRONGOLD, FABIANA AN ALGEBRAIC CHARACTERIZATION OF SIMPLE CLOSED CURVES ON SURFACES WITH BOUNDARY, Journal of Topology and Analysis, Volume 02 (2010) no. 03, p. 395 | DOI:10.1142/s1793525310000379
  • Manturov, Vassily O Parity in knot theory, Sbornik: Mathematics, Volume 201 (2010) no. 5, p. 693 | DOI:10.1070/sm2010v201n05abeh004089
  • Мантуров, Василий Олегович; Manturov, Vassily Olegovich Четность в теории узлов, Математический сборник, Volume 201 (2010) no. 5, p. 65 | DOI:10.4213/sm7574
  • Chas, Moira; Sullivan, Dennis String Topology in Dimensions Two and Three, Algebraic Topology (2009), p. 33 | DOI:10.1007/978-3-642-01200-6_2
  • Goresky, Mark; Hingston, Nancy Loop products and closed geodesics, Duke Mathematical Journal, Volume 150 (2009) no. 1 | DOI:10.1215/00127094-2009-049
  • LE DONNE, ATTILIO ON LIE BIALGEBRAS OF LOOPS ON ORIENTABLE SURFACES, Journal of Knot Theory and Its Ramifications, Volume 17 (2008) no. 03, p. 351 | DOI:10.1142/s0218216508006178
  • Nelson, J E; Picken, R F A quantum Goldman bracket in (2 + 1) quantum gravity, Journal of Physics A: Mathematical and Theoretical, Volume 41 (2008) no. 30, p. 304011 | DOI:10.1088/1751-8113/41/30/304011
  • Turaev, Vladimir Cobordism of knots on surfaces, Journal of Topology, Volume 1 (2008) no. 2, p. 285 | DOI:10.1112/jtopol/jtn002
  • Bonahon, Francis; Liu, Xiaobo Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms, Geometry Topology, Volume 11 (2007) no. 2, p. 889 | DOI:10.2140/gt.2007.11.889
  • Turaev, Vladimir Coalgebras of words and phrases, Journal of Algebra, Volume 314 (2007) no. 1, p. 303 | DOI:10.1016/j.jalgebra.2007.02.029
  • Chernov, Vladimir V; Rudyak, Yuli B Toward a general theory of linking invariants, Geometry Topology, Volume 9 (2005) no. 4, p. 1881 | DOI:10.2140/gt.2005.9.1881
  • Gavarini, Fabio The crystal duality principle: From Hopf algebras to geometrical symmetries, Journal of Algebra, Volume 285 (2005) no. 1, p. 399 | DOI:10.1016/j.jalgebra.2004.12.003
  • Turaev, Vladimir Loops on surfaces, Feynman diagrams, and trees, Journal of Geometry and Physics, Volume 53 (2005) no. 4, p. 461 | DOI:10.1016/j.geomphys.2004.07.010
  • Ohtsuki, Tomotada, Invariants of Knots and 3–manifolds (Kyoto 2001) (2004), p. 377 | DOI:10.2140/gtm.2002.4.377
  • Chas, Moira; Sullivan, Dennis Closed String Operators in Topology Leading to Lie Bialgebras and Higher String Algebra, The Legacy of Niels Henrik Abel (2004), p. 771 | DOI:10.1007/978-3-642-18908-1_27
  • Chas, Moira Combinatorial Lie bialgebras of curves on surfaces, Topology, Volume 43 (2004) no. 3, p. 543 | DOI:10.1016/j.top.2003.03.003
  • Kaiser, Uwe Deformation of string topology into homotopy skein modules, Algebraic Geometric Topology, Volume 3 (2003) no. 2, p. 1005 | DOI:10.2140/agt.2003.3.1005
  • Чехов, Леонид Олегович; Chekhov, Leonid Olegovich; Пеннер, Р Ч; Penner, Robert C Введение в квантовую теорию Тeрстона, Успехи математических наук, Volume 58 (2003) no. 6, p. 93 | DOI:10.4213/rm676
  • J, Encyclopaedia of Mathematics, Supplement III (2001), p. 216 | DOI:10.1007/978-0-306-48373-8_10
  • Kaiser, Uwe Presentations of homotopy skein modules of oriented 3-manifolds, Journal of Knot Theory and Its Ramifications, Volume 10 (2001) no. 03, p. 461 | DOI:10.1142/s0218216501000962
  • Kassel, Christian; Turaev, Vladimir Biquantization of Lie bialgebras, Pacific Journal of Mathematics, Volume 195 (2000) no. 2, p. 297 | DOI:10.2140/pjm.2000.195.297
  • BULLOCK, DOUG; FROHMAN, CHARLES; KANIA-BARTOSZYŃSKA, JOANNA UNDERSTANDING THE KAUFFMAN BRACKET SKEIN MODULE, Journal of Knot Theory and Its Ramifications, Volume 08 (1999) no. 03, p. 265 | DOI:10.1142/s0218216599000183
  • Conti, Roberto; Contucci, Pierluigi; Falcolini, Corrado Polynomial invariants for trees a statistical mechanics approach, Discrete Applied Mathematics, Volume 81 (1998) no. 1-3, p. 225 | DOI:10.1016/s0166-218x(97)88003-1
  • Alekseev, Anton Yu.; Schomerus, Volker Representation theory of Chern-Simons observables, Duke Mathematical Journal, Volume 85 (1996) no. 2 | DOI:10.1215/s0012-7094-96-08519-1
  • Przytycki, Józef H. A note on the Lickorish-Millett-Turaev formula for the Kauffman polynomial, Proceedings of the American Mathematical Society, Volume 121 (1994) no. 2, p. 645 | DOI:10.1090/s0002-9939-1994-1213869-5

Cité par 106 documents. Sources : Crossref