Plongements radiaux SnRn+1 à courbure de Gauss positive prescrite
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 18 (1985) no. 4, pp. 635-649.
@article{ASENS_1985_4_18_4_635_0,
     author = {Delano\"e, Ph.},
     title = {Plongements radiaux $S^n\hookrightarrow {R}^{n+1}$ \`a courbure de {Gauss} positive prescrite},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {635--649},
     publisher = {Elsevier},
     volume = {4e s{\'e}rie, 18},
     number = {4},
     year = {1985},
     doi = {10.24033/asens.1498},
     mrnumber = {87j:53011},
     zbl = {0594.53039},
     language = {fr},
     url = {https://www.numdam.org/articles/10.24033/asens.1498/}
}
TY  - JOUR
AU  - Delanoë, Ph.
TI  - Plongements radiaux $S^n\hookrightarrow {R}^{n+1}$ à courbure de Gauss positive prescrite
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1985
SP  - 635
EP  - 649
VL  - 18
IS  - 4
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.24033/asens.1498/
DO  - 10.24033/asens.1498
LA  - fr
ID  - ASENS_1985_4_18_4_635_0
ER  - 
%0 Journal Article
%A Delanoë, Ph.
%T Plongements radiaux $S^n\hookrightarrow {R}^{n+1}$ à courbure de Gauss positive prescrite
%J Annales scientifiques de l'École Normale Supérieure
%D 1985
%P 635-649
%V 18
%N 4
%I Elsevier
%U https://www.numdam.org/articles/10.24033/asens.1498/
%R 10.24033/asens.1498
%G fr
%F ASENS_1985_4_18_4_635_0
Delanoë, Ph. Plongements radiaux $S^n\hookrightarrow {R}^{n+1}$ à courbure de Gauss positive prescrite. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 18 (1985) no. 4, pp. 635-649. doi : 10.24033/asens.1498. https://www.numdam.org/articles/10.24033/asens.1498/

[1] I. Bakelman et B. Kantor, Existence of Spherically Homeomorphic Hypersurfaces in Euclidean Space with Prescribed Mean Curvature (Geometry and Topology, Léningrad, vol. 1, 1974, p. 3-10). | MR

[2] M. Berger, P. Gauduchon et E. Mazet, Le Spectre d'une variété riemannienne (Lect. Notes Math., n° 194, Springer Verlag Berlin, Heidelberg, New York, 1971). | MR | Zbl

[3] S.-Y. Cheng et S.-T. Yau, On the regularity of the Solution of the n-Dimensional Minkowski Problem (Comm. Pure Appl. Math., vol. XXXIX, 1976, p. 495-516). | MR | Zbl

[4], [5], [6] Ph. Delanoë, Equations du type de Monge-Ampère sur les variétés riemanniennes compactes I, II, III, (J. Funct. Anal., vol. 40, n° 3, 1981, p. 358-386; vol. 41, n° 3, 1981, p. 341-353; vol. 45, n° 3, 1982, p. 403-430). | Zbl

[7] Ph. Delanoë, Equations de Monge-Ampère invariantes sur les variétés riemanniennes Compactes (Ann. Inst. Henri Poincaré Anal. Non Linéaire, vol. 1, n° 3, 1984, p. 147-178). | Numdam | MR | Zbl

[8] Ph. Delanoë et A. Hirschowitz, About Nonlinear Elliptic Problems on Compact Manifolds (à paraître).

[9] J. Leray et J. Schauder, Topologie et équations fonctionnelles (Ann. Sci. Éc. Norm. Sup., vol. 51, 1934, p. 45-78). | JFM | Numdam | Zbl

[10] C. B. Morrey, Multiple Integrals in the Calculus of Variations (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen Band, 130, Springer-Verlag, Berlin, Heidelberg, New York, 1966). | MR | Zbl

[11] L. Nirenberg, The Weyl and Minkowski Problems in Differential Geometry in the Large (Comm. Pure Appl. Math., vol. VI, 1953, p. 337-394). | MR | Zbl

[12] V. I. Oliker, Hypersurfaces in ℝn + 1 with Prescribed Gaussian Curvature and Related Equations of Monge-Ampère Type, (Comm. P.D.E., vol. 9, n° 8, 1984, p. 807-838). | MR | Zbl

[13] A. V. Pogorelov, The Minkowski Multidimensional Problem (Winston-Wiley, 1978, New York, Toronto, London, Sydney). | MR

[14] M. H. Protter et H. F. Weinberger, Maximum Principles in Differential Equations (Prentice-Hall, Inc., Englewood Cliffs, N.Y., 1967). | MR | Zbl

[15] A. E. Treibergs et S. Walter Wei, Embedded Hyperspheres with prescribed Mean Curvature, (preprint M.S.R.I., 026-83, Berkeley, March 1983). | MR

[16] B. M. Vereschagin, Reconstruction d'une surface fermée convexe à partir de sa courbure de Gauss (Questions de Géométrie Globale, A. L. VERNER éd., Inst. Pédag. d'État de Léningrad, 1979, p. 7-12, en russe). | Zbl

[17] Yau éd., Seminar on Differential Geometry (Ann. of Math. Studies, Study 102, Princeton University Press, Princeton N.J., 1982). | MR | Zbl

[18] L. Caffarelli, L. Nirenberg et J. Spruck, Nonlinear Second Order Elliptic Equations IV. Starshaped Compact Weingarten Hypersurfaces, (preprint 1985). | MR

  • Guang, Qiang; Li, Qi-Rui; Wang, Xu-Jia On the functional ∫Ωf + ∫Ω*g, Advanced Nonlinear Studies, Volume 24 (2024) no. 1, p. 29 | DOI:10.1515/ans-2023-0105
  • Wang, Bin Starshaped compact hypersurfaces in warped product manifolds I: prescribed curvature equations, Calculus of Variations and Partial Differential Equations, Volume 63 (2024) no. 9 | DOI:10.1007/s00526-024-02839-w
  • Feng, Shuxiang; Han, Yingbo; Jiang, Kaige; Wei, Shihshu Walter The geometry of Φ(3)-harmonic maps, Nonlinear Analysis, Volume 234 (2023), p. 113318 | DOI:10.1016/j.na.2023.113318
  • Han, Yingbo; Wei, Shihshu Walter Φ-Harmonic Maps and Φ-Superstrongly Unstable Manifolds, The Journal of Geometric Analysis, Volume 32 (2022) no. 1 | DOI:10.1007/s12220-021-00770-6
  • Hansen, G.; Herburt, I.; Martini, H.; Moszyńska, M. Starshaped sets, Aequationes mathematicae, Volume 94 (2020) no. 6, p. 1001 | DOI:10.1007/s00010-020-00720-7
  • Xiao, Jie A maximum problem of S.-T. Yau for variational p-capacity, Advances in Geometry, Volume 17 (2017) no. 4, p. 483 | DOI:10.1515/advgeom-2017-0035
  • Bayard, Pierre; Delanoë, Philippe Entire spacelike radial graphs in the Minkowski space, asymptotic to the light-cone, with prescribed scalar curvature, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 26 (2009) no. 3, p. 903 | DOI:10.1016/j.anihpc.2008.03.008
  • Guan, Pengfei; Lin, Changshou; Ma, Xi'nan The Christoffel-Minkowski Problem II: Weingarten Curvature Equations*, Chinese Annals of Mathematics, Series B, Volume 27 (2006) no. 6, p. 595 | DOI:10.1007/s11401-005-0575-0
  • Hanani, Abdellah Hypersurfaces d'un fibré vectoriel Riemannien à courbure de Gauss prescrite, Comptes Rendus. Mathématique, Volume 335 (2002) no. 11, p. 927 | DOI:10.1016/s1631-073x(02)02588-8
  • Gerhardt, Claus Closed Weingarten hypersurfaces in Riemannian manifolds, Journal of Differential Geometry, Volume 43 (1996) no. 3 | DOI:10.4310/jdg/1214458325
  • Wang, Xu-Jia Existence of convex hypersurfaces with prescribed Gauss-Kronecker curvature, Transactions of the American Mathematical Society, Volume 348 (1996) no. 11, p. 4501 | DOI:10.1090/s0002-9947-96-01650-9
  • Labourie, François Exemples de courbes pseudo-holomorphes en géométrie riemannienne, Holomorphic Curves in Symplectic Geometry, Volume 117 (1994), p. 251 | DOI:10.1007/978-3-0348-8508-9_10
  • Tso, Kaising A direct method approach for the existence of convex hypersurfaces with prescribed Gauss-Kronecker curvature, Mathematische Zeitschrift, Volume 209 (1992) no. 1, p. 339 | DOI:10.1007/bf02570839
  • Delanoë, P. Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 8 (1991) no. 5, p. 443 | DOI:10.1016/s0294-1449(16)30256-6
  • Tso, Kaising Convex hypersurfaces with prescribed Gauss-Kronecker curvature, Journal of Differential Geometry, Volume 34 (1991) no. 2 | DOI:10.4310/jdg/1214447213
  • Treibergs, Andrejs Bounds for hyperspheres of prescribed Gaussian curvature, Journal of Differential Geometry, Volume 31 (1990) no. 3 | DOI:10.4310/jdg/1214444638

Cité par 16 documents. Sources : Crossref