Une formule de traces pour l’opérateur de Schrödinger dans 3
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 14 (1981) no. 1, pp. 27-39.
@article{ASENS_1981_4_14_1_27_0,
     author = {Colin de Verdi\`ere, Yves},
     title = {Une formule de traces pour l{\textquoteright}op\'erateur de {Schr\"odinger} dans $\mathbb {R}^3$},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {27--39},
     publisher = {Elsevier},
     volume = {4e s{\'e}rie, 14},
     number = {1},
     year = {1981},
     doi = {10.24033/asens.1395},
     mrnumber = {82g:35088},
     zbl = {0482.35068},
     language = {fr},
     url = {https://www.numdam.org/articles/10.24033/asens.1395/}
}
TY  - JOUR
AU  - Colin de Verdière, Yves
TI  - Une formule de traces pour l’opérateur de Schrödinger dans $\mathbb {R}^3$
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1981
SP  - 27
EP  - 39
VL  - 14
IS  - 1
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.24033/asens.1395/
DO  - 10.24033/asens.1395
LA  - fr
ID  - ASENS_1981_4_14_1_27_0
ER  - 
%0 Journal Article
%A Colin de Verdière, Yves
%T Une formule de traces pour l’opérateur de Schrödinger dans $\mathbb {R}^3$
%J Annales scientifiques de l'École Normale Supérieure
%D 1981
%P 27-39
%V 14
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.24033/asens.1395/
%R 10.24033/asens.1395
%G fr
%F ASENS_1981_4_14_1_27_0
Colin de Verdière, Yves. Une formule de traces pour l’opérateur de Schrödinger dans $\mathbb {R}^3$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 14 (1981) no. 1, pp. 27-39. doi : 10.24033/asens.1395. https://www.numdam.org/articles/10.24033/asens.1395/

[A-S] P. Alsholm et G. Schmidt, Spectral and Scattering Theory for Schrödinger Operators (Arch. Rat. Mech. Anal., vol. 40, 1971, p. 281-311). | MR | Zbl

[B] V. S. Buslaev, Scattered Plane waves, Spectral Asymptotics and Trace Formulas in Exterior Problems (Dokl. Akad. Nauk S.S.S.R., vol. 197, 1971, p. 591-595). | MR | Zbl

[B-G-M] M. Berger, P. Gauduchon et E. Mazet, Le spectre d'une variété riemannienne (Lecture Notes in Math., vol. 194, 1971). | MR | Zbl

[B-K] M. S. Birman et M. G. Krein, On the Theory of wave Operators and Scattering Operators (Dokl. Akad. Nauk S.S.S.R., vol. 144, 1962, p. 475-478). | MR | Zbl

[CV] Y. Colin De Verdière, Spectre du laplacien et longueurs des géodésiques périodiques II (Compositio Mathematica, vol. 27, 1973, p. 159-184). | Numdam | MR | Zbl

[F-Z] P. Faddeev et V. Zakharov, KdV Equation : a Completely Integrable Hamiltonian System (Funct. Anal. and Appl. vol. 5, 1971, p. 280-288). | Zbl

[G-M-G-T] V. Glaser, A. Martin, H. Grosse et W. Thirring, A Family of Optimal Conditions for the Absence of Bound States in a Potential. Studies in Math. Phys., LIEB, SIMON et WIGHTMANN, éd., Princeton, 1976, p. 169-194. | Zbl

[J-K] A. Jensen et T. Kato, Asymptotic behaviour of the Scattering Phase for Exterior Domains (Comm. P.D.E., vol. 3, 1978, p. 1165-1195). | MR | Zbl

[K-M] H. P. Mckean et Van Moerbecke, The Spectrum of Hill's Equation (Invent. Math., vol. 30, 1975, p. 217-254). | MR | Zbl

[L-P1] P. Lax et R. S. Phillips, Scattering Theory for Automorphic Functions (Annals Math. Studies, 1976, Princeton). | MR | Zbl

[L-P 2] P. Lax et R. S. Phillips, The Time Delay Operator and a Related Trace Formula. Topics in Functional Analysis, GOHBERG et M. KAC, ed., Academic Press, 1978, p. 197-215. | MR | Zbl

[L-T] E. Lieb et W. Thirring, Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian... Studies in Math. Phys., LIEB, SIMON et WIGHTMANN, éd., Princeton, 1976, p. 269-304. | Zbl

[MR] A. Majda et J. Ralston, An Analogue of Weyl's Theorem for Unbounded Domains I, II et III (Duke Math. J., vol. 45, p. 183-196 et 513-536 ; vol. 46, 1979, p. 725-731). | Zbl

[N] R. Newton, Non Central Potentiels : the Generalized Levinson Theorem and the Structure of the Spectrum (J. Math. Phys., vol. 18, 1977, p. 1348-1357). | MR

[R-S] M. Reed et B. Simon, Scattering Theory, Academic Press, 1979. | Zbl

[S 1] B. Simon, Quantum Mechanics for Hamiltonians defined as Quadratic Forms, Princeton, 1971. | Zbl

[S 2] B. Simon, Trace Ideals and their Applications, Cambridge, 1979. | MR | Zbl

[S 3] B. Simon, On the Number of Bound States of the Two-Body Schrödinger Operators. A review. Studies in Math. Phys., LIEB, SIMON et WIGHTMANN, éd., Princeton, 1976, p. 305-326. | Zbl

[Z-K] C. Zemach et A. Klein, The Born Expansion in non Relativistic Quantum Theory, I (Nuovo Cimento, vol. 10, 1958, p. 1078-1087). | MR | Zbl

  • Borthwick, David; Wang, Yiran Existence of resonances for Schrödinger operators on hyperbolic space, Analysis PDE, Volume 17 (2024) no. 6, p. 2077 | DOI:10.2140/apde.2024.17.2077
  • Smith, Hart F. On the trace of the wave group and regularity of potentials, Annales de l'Institut Fourier, Volume 73 (2023) no. 4, p. 1453 | DOI:10.5802/aif.3538
  • Dimassi, Mouez; Fujiié, Setsuro Spectral asymptotics for the Schrödinger operator with a non-decaying potential, Asymptotic Analysis, Volume 130 (2022) no. 3-4, p. 335 | DOI:10.3233/asy-211754
  • Hislop, Peter; Wolf, Robert Compactness of iso-resonant potentials for Schrödinger operators in dimensions one and three, Transactions of the American Mathematical Society, Volume 374 (2021) no. 6, p. 4481 | DOI:10.1090/tran/8361
  • Korotyaev, E. Trace Formulas for Schrödinger Operators with Complex Potentials, Russian Journal of Mathematical Physics, Volume 27 (2020) no. 1, p. 82 | DOI:10.1134/s1061920820010082
  • Christiansen, T. J. Resonant Rigidity for Schrödinger Operators in Even Dimensions, Annales Henri Poincaré, Volume 20 (2019) no. 5, p. 1543 | DOI:10.1007/s00023-019-00791-6
  • Acuña Valverde, Luis Trace asymptotics for fractional Schrödinger operators, Journal of Functional Analysis, Volume 266 (2014) no. 2, p. 514 | DOI:10.1016/j.jfa.2013.10.021
  • Stepin, Stanislav A. Short-time Asymptotics for Semigroups of Diffusion Type and Beyond, Geometric Methods in Physics (2013), p. 415 | DOI:10.1007/978-3-0348-0448-6_38
  • Bolte, Jens; Keppeler, Stefan Heat kernel asymptotics for magnetic Schrödinger operators, Journal of Mathematical Physics, Volume 54 (2013) no. 11 | DOI:10.1063/1.4829061
  • Isozaki, Hiroshi; Korotyaev, Evgeny Inverse Problems, Trace Formulae for Discrete Schrödinger Operators, Annales Henri Poincaré, Volume 13 (2012) no. 4, p. 751 | DOI:10.1007/s00023-011-0141-0
  • Stepin, S. A. Schwartz Kernel asymptotics and regularized traces of diffusion semigroups, Functional Analysis and Its Applications, Volume 44 (2010) no. 1, p. 76 | DOI:10.1007/s10688-010-0010-5
  • Stepin, S. A. Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup, Proceedings of the Steklov Institute of Mathematics, Volume 271 (2010) no. 1, p. 228 | DOI:10.1134/s0081543810040176
  • Степин, Станислав Анатольевич; Stepin, Stanislav Anatol'evich; Степин, Станислав Анатольевич; Stepin, Stanislav Anatol'evich Асимптотика интегрального ядра и регуляризованный след диффузионной полугруппы, Функциональный анализ и его приложения, Volume 44 (2010) no. 1, p. 90 | DOI:10.4213/faa2975
  • Birman, M. Sh.; Sloushch, V. A. Two-sided estimates for the trace of the difference of two semigroups, Functional Analysis and Its Applications, Volume 43 (2009) no. 3, p. 184 | DOI:10.1007/s10688-009-0026-x
  • Бирман, Михаил Шлемович; Birman, Mikhail Shlemovich; Слоущ, Владимир Анатольевич; Sloushch, Vladimir Anatolevich Двусторонние оценки для следа разности пары полугрупп, Функциональный анализ и его приложения, Volume 43 (2009) no. 3, p. 26 | DOI:10.4213/faa2958
  • Stepin, S. A. Parametrix, kernel asymptotics, and regularized trace for the diffusion semigroup, Doklady Mathematics, Volume 77 (2008) no. 3, p. 424 | DOI:10.1134/s1064562408030289
  • Yafaev, D. R. The Schrödinger operator: Perturbation determinants, the spectral shift function, trace identities, and all that, Functional Analysis and Its Applications, Volume 41 (2007) no. 3, p. 217 | DOI:10.1007/s10688-007-0019-6
  • Яфаев, Дмитрий Рауэльевич; Yafaev, Dmitrii Rauel'evich Оператор Шрeдингера: определители возмущения, функция спектрального сдвига, тождества следов и прочее, Функциональный анализ и его приложения, Volume 41 (2007) no. 3, p. 60 | DOI:10.4213/faa2868
  • Donnelly, Harold Compactness of isospectral potentials, Transactions of the American Mathematical Society, Volume 357 (2004) no. 5, p. 1717 | DOI:10.1090/s0002-9947-04-03813-9
  • Korotyaev, E.; Pushnitski, A. Trace Formulae and High Energy Asymptotics for the Stark Operator, Communications in Partial Differential Equations, Volume 28 (2003) no. 3-4, p. 817 | DOI:10.1081/pde-120020498
  • Vasy, András; Wang, Xue Ping SMOOTHNESS AND HIGH ENERGY ASYMPTOTICS OF THE SPECTRAL SHIFT FUNCTION IN MANY-BODY SCATTERING, Communications in Partial Differential Equations, Volume 27 (2002) no. 11-12, p. 2139 | DOI:10.1081/pde-120016156
  • Bouclet, Jean-Marc Fonction spectrale pour des perturbations relativement Hilbert–Schmidt, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Volume 332 (2001) no. 10, p. 887 | DOI:10.1016/s0764-4442(01)01916-4
  • Bouclet, Jean-Marc Generalized scattering phase for long range perturbations of elliptic operators, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Volume 333 (2001) no. 9, p. 845 | DOI:10.1016/s0764-4442(01)02144-9
  • Kostrykin, V.; Schrader, R. Cluster Properties of One Particle Schrödinger Operators. II, Reviews in Mathematical Physics, Volume 10 (1998) no. 05, p. 627 | DOI:10.1142/s0129055x98000203
  • Hurt, Norman E. References, Quantum Chaos and Mesoscopic Systems (1997), p. 297 | DOI:10.1007/978-94-015-8792-1_15
  • Melin, Anders Trace distributions associated to the Schrödinger operator, Journal d'Analyse Mathématique, Volume 59 (1992) no. 1, p. 133 | DOI:10.1007/bf02790222
  • Jensen, Arne High energy asymptotics for the total scattering phase in potential scattering theory, Functional-Analytic Methods for Partial Differential Equations, Volume 1450 (1990), p. 187 | DOI:10.1007/bfb0084906
  • Gérard, C.; Martinez, A.; Robert, D. Breit-Wigner formulas for the scattering phase and the total scattering cross-section in the semi-classical limit, Communications in Mathematical Physics, Volume 121 (1989) no. 2, p. 323 | DOI:10.1007/bf01217809
  • Robert, D; Tamura, H Semi-classical asymptotics for local spectral densities and time delay problems in scattering processes, Journal of Functional Analysis, Volume 80 (1988) no. 1, p. 124 | DOI:10.1016/0022-1236(88)90069-9
  • Albeverio, Sergio; Arede, Teresa The Relation Between Quantum Mechanics And Classical Mechanics: A Survey Of Some Mathematical Aspects, Chaotic Behavior in Quantum Systems, Volume 120 (1985), p. 37 | DOI:10.1007/978-1-4613-2443-0_3
  • Robert, D.; Tamura, H. Semi-classical bounds for resolvents of schrödinger operators and asymptotics for scattering phases, Communications in Partial Differential Equations, Volume 9 (1984) no. 10, p. 1017 | DOI:10.1080/03605308408820355
  • Müller, Werner Spectral Theory for Riemannian Manifolds with Cusps and a Related Trace Formula, Mathematische Nachrichten, Volume 111 (1983) no. 1, p. 197 | DOI:10.1002/mana.19831110109
  • Ralston, James V. Propagation of Singularities and the Scattering Matrix, Singularities in Boundary Value Problems (1981), p. 169 | DOI:10.1007/978-94-009-8434-9_8

Cité par 33 documents. Sources : Crossref