@article{ASENS_1975_4_8_3_365_0, author = {Risler, Jean-Jacques}, title = {Sur l'anneau des fonctions de {Nash} globales}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {365--378}, publisher = {Elsevier}, volume = {4e s{\'e}rie, 8}, number = {3}, year = {1975}, doi = {10.24033/asens.1293}, mrnumber = {52 #13842}, zbl = {0318.32002}, language = {fr}, url = {https://www.numdam.org/articles/10.24033/asens.1293/} }
TY - JOUR AU - Risler, Jean-Jacques TI - Sur l'anneau des fonctions de Nash globales JO - Annales scientifiques de l'École Normale Supérieure PY - 1975 SP - 365 EP - 378 VL - 8 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.24033/asens.1293/ DO - 10.24033/asens.1293 LA - fr ID - ASENS_1975_4_8_3_365_0 ER -
Risler, Jean-Jacques. Sur l'anneau des fonctions de Nash globales. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 8 (1975) no. 3, pp. 365-378. doi : 10.24033/asens.1293. https://www.numdam.org/articles/10.24033/asens.1293/
[2] Zbl
, E. G. A. I., nouvelle édition, Springer, 1971. |[3] Points de platitude... (Inv. Math., vol. 8, 1967).
,[4] Sub-Analytic Sets, Number Theory, Tokyo, 1973. | MR | Zbl
,[5] An Algebraization of Vector Bundles on Compact Manifolds (J. Pure and Appl. Alg., vol. 24, 1970). | MR | Zbl
,[6]
, (Varsovie) (article à paraître).[7] Local Rings, Interscience Publishers. | MR | Zbl
, , C. R. Acad. Sc., t. 276, série A, 1973, p. 1513. |[9] Un théorème des zéros en géométrie algébrique et analytique réelles [Séminaire Norguet 1970-1973 (Lecture Notes, n° 409, Springer, 1974)]. | MR | Zbl
,[10] Anneaux factoriels (Publication de l'Institut de Mathématiques de Sao Paulo, 1963). | MR | Zbl
,[11] Noetherianness of Rings of Holomorphic Functions, Proc. Amer. Math. Soc., 21 (1969). | Zbl
,[12] Su una congettura di Nash (Ann. Scuola Normale Sup. di Pisa, vol. 27, 1973). | Numdam | MR | Zbl
,[13] Elementary Structure of Real Algebraic Varieties (Annals of Math., vol. 66, 1957). | MR | Zbl
,[14] A Nullstellensatz for Nash rings (Pacific J. of Math., 1975). | Zbl
,- Unique jet determination of CR maps into Nash sets, Advances in Mathematics, Volume 432 (2023), p. 109271 | DOI:10.1016/j.aim.2023.109271
- Approximations in globally subanalytic and Denjoy-Carleman classes, Advances in Mathematics, Volume 385 (2021), p. 107764 | DOI:10.1016/j.aim.2021.107764
- Multiparameter perturbation theory of matrices and linear operators, Transactions of the American Mathematical Society, Volume 373 (2020) no. 4, p. 2933 | DOI:10.1090/tran/8061
- Leibniz complexity of Nash functions on differentiations, Journal of the Mathematical Society of Japan, Volume 71 (2019) no. 3 | DOI:10.2969/jmsj/76877687
- Nash functions and manifolds, Lectures in Real Geometry (1996), p. 69 | DOI:10.1515/9783110811117.69
- A note on Rabin's width of a complete proof, Computational Complexity, Volume 4 (1994) no. 1, p. 12 | DOI:10.1007/bf01205053
- m-adische Topologie, Fr�chettopologie und der Cartansche Abgeschlossenheitssatz, Archiv der Mathematik, Volume 57 (1991) no. 5, p. 456 | DOI:10.1007/bf01246742
- On Noetherianness of Nash rings, Proceedings of the American Mathematical Society, Volume 90 (1984) no. 1, p. 30 | DOI:10.1090/s0002-9939-1984-0722409-x
- An algebraic property for Nash rings, ANNALI DELL UNIVERSITA DI FERRARA, Volume 29 (1983) no. 1, p. 21 | DOI:10.1007/bf02825037
- The divisor class groups of some rings of global real analytic, Nash or rational regular functions, Géométrie Algébrique Réelle et Formes Quadratiques, Volume 959 (1982), p. 218 | DOI:10.1007/bfb0062257
- An introduction to Nash functions, Géométrie Algébrique Réelle et Formes Quadratiques, Volume 959 (1982), p. 41 | DOI:10.1007/bfb0062249
- Real algebraic geometry and the 17th Hilbert problem, Mathematische Annalen, Volume 251 (1980) no. 3, p. 213 | DOI:10.1007/bf01428942
- Sur la factorialité des anneaux de fonctions de Nash, Commentarii Mathematici Helvetici, Volume 52 (1977) no. 1, p. 211 | DOI:10.1007/bf02567365
Cité par 13 documents. Sources : Crossref