Möbius inversion for the Bruhat ordering on a Weyl group
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 4 (1971) no. 3, pp. 393-398.
@article{ASENS_1971_4_4_3_393_0,
     author = {Verma, Daya-Nand},
     title = {M\"obius inversion for the {Bruhat} ordering on a {Weyl} group},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {393--398},
     publisher = {Elsevier},
     volume = {Ser. 4, 4},
     number = {3},
     year = {1971},
     doi = {10.24033/asens.1215},
     mrnumber = {45 #139},
     zbl = {0236.20035},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.1215/}
}
TY  - JOUR
AU  - Verma, Daya-Nand
TI  - Möbius inversion for the Bruhat ordering on a Weyl group
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1971
SP  - 393
EP  - 398
VL  - 4
IS  - 3
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.24033/asens.1215/
DO  - 10.24033/asens.1215
LA  - en
ID  - ASENS_1971_4_4_3_393_0
ER  - 
%0 Journal Article
%A Verma, Daya-Nand
%T Möbius inversion for the Bruhat ordering on a Weyl group
%J Annales scientifiques de l'École Normale Supérieure
%D 1971
%P 393-398
%V 4
%N 3
%I Elsevier
%U https://www.numdam.org/articles/10.24033/asens.1215/
%R 10.24033/asens.1215
%G en
%F ASENS_1971_4_4_3_393_0
Verma, Daya-Nand. Möbius inversion for the Bruhat ordering on a Weyl group. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 4 (1971) no. 3, pp. 393-398. doi : 10.24033/asens.1215. https://www.numdam.org/articles/10.24033/asens.1215/

[1] N. Bourbaki, Élément de Mathématiques ; Fasc. XXXIV : Groupes et Algèbres de Lie, chap. IV et V, Hermann, Paris, 1968. | Zbl

[2] G.-C. Rota, On the foundations of combinatorial theory ; I. Theory of Möbius functions (Zeits. für Wahrscheinlichkeitstheorie, vol. 2, 1964, p. 340-368). | MR | Zbl

[3] D.-N. Verma, Structure of certain induced representations of complex semisimple Lie algebras (Bull. Amer. Math. Soc., vol. 74, 1968, p. 160-166). | MR | Zbl

  • Kim, Jang Soo; Yun, Sun-mi Characteristic Polynomials of the Weak Order on Classical and Affine Coxeter Groups, Order, Volume 41 (2024) no. 2, p. 319 | DOI:10.1007/s11083-023-09632-y
  • Brubaker, Ben; Buciumas, Valentin; Bump, Daniel; Gustafsson, Henrik P.A. Colored five-vertex models and Demazure atoms, Journal of Combinatorial Theory, Series A, Volume 178 (2021), p. 105354 | DOI:10.1016/j.jcta.2020.105354
  • Ehrenborg, Richard; Readdy, Margaret Balanced and Bruhat Graphs, Annals of Combinatorics, Volume 24 (2020) no. 3, p. 587 | DOI:10.1007/s00026-020-00510-7
  • Can, Mahir Bilen; Cherniavsky, Yonah Stirling posets, Israel Journal of Mathematics, Volume 237 (2020) no. 1, p. 185 | DOI:10.1007/s11856-020-2004-1
  • Mazorchuk, Volodymyr; Mrđen, Rafael BGG complexes in singular blocks of category O, Journal of Pure and Applied Algebra, Volume 224 (2020) no. 12, p. 106449 | DOI:10.1016/j.jpaa.2020.106449
  • Bump, Daniel; Nakasuji, Maki Casselman’s Basis of Iwahori Vectors and Kazhdan–Lusztig Polynomials, Canadian Journal of Mathematics, Volume 71 (2019) no. 6, p. 1351 | DOI:10.4153/cjm-2018-011-1
  • Shi, Jian-yi Reduced expressions for the elements in a Bruhat interval, Discrete Mathematics, Volume 342 (2019) no. 5, p. 1253 | DOI:10.1016/j.disc.2019.01.001
  • Can, Mahir Bilen The rook monoid is lexicographically shellable, European Journal of Combinatorics, Volume 81 (2019), p. 265 | DOI:10.1016/j.ejc.2019.05.009
  • Pawlowski, Brendan; Rhoades, Brendon A flag variety for the Delta Conjecture, Transactions of the American Mathematical Society, Volume 372 (2019) no. 11, p. 8195 | DOI:10.1090/tran/7918
  • Mbirika, Aba; Pietraho, Thomas; Silver, William On the sign representations for the complex reflection groups G(r, p, n), Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, Volume 57 (2016) no. 4, p. 851 | DOI:10.1007/s13366-016-0289-3
  • Wyser, Benjamin J. The Bruhat order on clans, Journal of Algebraic Combinatorics, Volume 44 (2016) no. 3, p. 495 | DOI:10.1007/s10801-016-0678-6
  • Lam, Thomas The uncrossing partial order on matchings is Eulerian, Journal of Combinatorial Theory, Series A, Volume 135 (2015), p. 105 | DOI:10.1016/j.jcta.2015.04.004
  • Brubaker, Ben; Bump, Daniel; Licata, Anthony Whittaker functions and Demazure operators, Journal of Number Theory, Volume 146 (2015), p. 41 | DOI:10.1016/j.jnt.2014.01.001
  • Upperman, Johnathon; Vinroot, C. Ryan A weight statistic and partial order on products ofm-cycles, Discrete Mathematics, Volume 315-316 (2014), p. 9 | DOI:10.1016/j.disc.2013.10.002
  • Jones, Brant; Woo, Alexander Mask Formulas for Cograssmannian Kazhdan-Lusztig Polynomials, Annals of Combinatorics, Volume 17 (2013) no. 1, p. 151 | DOI:10.1007/s00026-012-0172-3
  • Knutson, Allen; Lam, Thomas; Speyer, David E. Positroid varieties: juggling and geometry, Compositio Mathematica, Volume 149 (2013) no. 10, p. 1710 | DOI:10.1112/s0010437x13007240
  • Andersen, Henning Haahr The Rôle of Verma in Representation Theory, Connected at Infinity II, Volume 67 (2013), p. 152 | DOI:10.1007/978-93-86279-56-9_7
  • PONS, VIVIANE INTERVAL STRUCTURE OF THE PIERI FORMULA FOR GROTHENDIECK POLYNOMIALS, International Journal of Algebra and Computation, Volume 23 (2013) no. 01, p. 123 | DOI:10.1142/s0218196713500045
  • Rains, Eric M.; Vazirani, Monica J. Deformations of permutation representations of Coxeter groups, Journal of Algebraic Combinatorics, Volume 37 (2013) no. 3, p. 455 | DOI:10.1007/s10801-012-0371-3
  • Lam, Thomas; Shimozono, Mark Quantum cohomology of G/P and homology of affine Grassmannian, Acta Mathematica, Volume 204 (2010) no. 1, p. 49 | DOI:10.1007/s11511-010-0045-8
  • Lenart, C.; Postnikov, A. Affine Weyl Groups in K-Theory and Representation Theory, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnm038
  • Jones, Brant C. An Explicit Derivation of the Möbius Function for Bruhat Order, Order, Volume 26 (2009) no. 4, p. 319 | DOI:10.1007/s11083-009-9128-6
  • Stembridge, John R. A Short Derivation of the Möbius Function for the Bruhat Order, Journal of Algebraic Combinatorics, Volume 25 (2007) no. 2, p. 141 | DOI:10.1007/s10801-006-0027-2
  • Marietti, Mario Algebraic and combinatorial properties of zircons, Journal of Algebraic Combinatorics, Volume 26 (2007) no. 3, p. 363 | DOI:10.1007/s10801-007-0061-8
  • Tenner, Bridget Eileen Pattern avoidance and the Bruhat order, Journal of Combinatorial Theory, Series A, Volume 114 (2007) no. 5, p. 888 | DOI:10.1016/j.jcta.2006.10.003
  • Sjöstrand, Jonas Bruhat intervals as rooks on skew Ferrers boards, Journal of Combinatorial Theory, Series A, Volume 114 (2007) no. 7, p. 1182 | DOI:10.1016/j.jcta.2007.01.001
  • Mazorchuk, Volodymyr Some homological properties of the categoryO, Pacific Journal of Mathematics, Volume 232 (2007) no. 2, p. 313 | DOI:10.2140/pjm.2007.232.313
  • Geek, Meinolf; Malle, Gunter Reflection Groups, Volume 4 (2006), p. 337 | DOI:10.1016/s1570-7954(06)80009-4
  • Incitti, Federico Bruhat order on the involutions of classical Weyl groups, Advances in Applied Mathematics, Volume 37 (2006) no. 1, p. 68 | DOI:10.1016/j.aam.2005.11.002
  • Bruhat order, Combinatorics of Coxeter Groups, Volume 231 (2005), p. 27 | DOI:10.1007/3-540-27596-7_2
  • Incitti, Federico Bruhat order on classical Weyl groups: minimal chains and covering relation, European Journal of Combinatorics, Volume 26 (2005) no. 5, p. 729 | DOI:10.1016/j.ejc.2004.03.006
  • Incitti, Federico The Bruhat order on the involutions of the hyperoctahedral group, European Journal of Combinatorics, Volume 24 (2003) no. 7, p. 825 | DOI:10.1016/s0195-6698(03)00103-3
  • Cloux, Fokko du Computing Kazhdan-Lusztig Polynomials for Arbitrary Coxeter Groups, Experimental Mathematics, Volume 11 (2002) no. 3, p. 371 | DOI:10.1080/10586458.2002.10504482
  • du Cloux, Fokko An Abstract Model for Bruhat Intervals, European Journal of Combinatorics, Volume 21 (2000) no. 2, p. 197 | DOI:10.1006/eujc.1999.0343
  • Brenti, Francesco Lattice paths and Kazhdan-Lusztig polynomials, Journal of the American Mathematical Society, Volume 11 (1998) no. 2, p. 229 | DOI:10.1090/s0894-0347-98-00249-5
  • Brenti, Francesco Combinatorial Properties of the Kazhdan–LusztigR-Polynomials forSn, Advances in Mathematics, Volume 126 (1997) no. 1, p. 21 | DOI:10.1006/aima.1996.1607
  • Brenti, Francesco A combinatorial formula for Kazhdan-Lusztig polynomials, Inventiones Mathematicae, Volume 118 (1994) no. 1, p. 371 | DOI:10.1007/bf01231537
  • Lascoux, Alain; Schützenberger, Marcel-Paul Décompositions dans l'algèbre des différences divisées, Discrete Mathematics, Volume 99 (1992) no. 1-3, p. 165 | DOI:10.1016/0012-365x(92)90372-m
  • Greene, Curtis A Class of Lattices with Möbius Function ± 1, 0, European Journal of Combinatorics, Volume 9 (1988) no. 3, p. 225 | DOI:10.1016/s0195-6698(88)80013-1
  • References, Operators and Representation Theory, Volume 147 (1988), p. 285 | DOI:10.1016/s0304-0208(08)72044-9
  • Björner, Anders; Wachs, Michelle L. Generalized quotients in Coxeter groups, Transactions of the American Mathematical Society, Volume 308 (1988) no. 1, p. 1 | DOI:10.1090/s0002-9947-1988-0946427-x
  • Wachs, Michelle L. Quotients of Coxeter Complexes and Buildings with Linear Diagram, European Journal of Combinatorics, Volume 7 (1986) no. 1, p. 75 | DOI:10.1016/s0195-6698(86)80019-1
  • Carlin, Kevin J. Extensions of Verma modules, Transactions of the American Mathematical Society, Volume 294 (1986) no. 1, p. 29 | DOI:10.1090/s0002-9947-1986-0819933-4
  • Björner, Anders; Wachs, Michelle On lexicographically shellable posets, Transactions of the American Mathematical Society, Volume 277 (1983) no. 1, p. 323 | DOI:10.1090/s0002-9947-1983-0690055-6
  • Björner, Anders; Wachs, Michelle Bruhat order of Coxeter groups and shellability, Advances in Mathematics, Volume 43 (1982) no. 1, p. 87 | DOI:10.1016/0001-8708(82)90029-9
  • Hiller, Howard Combinatorics and intersections of Schubert varieties, Commentarii Mathematici Helvetici, Volume 57 (1982) no. 1, p. 41 | DOI:10.1007/bf02565846
  • Proctor, Robert A Classical Bruhat orders and lexicographic shellability, Journal of Algebra, Volume 77 (1982) no. 1, p. 104 | DOI:10.1016/0021-8693(82)90280-0
  • Edelman, Paul H. The Bruhat order of the symmetric group is lexicographically shellable, Proceedings of the American Mathematical Society, Volume 82 (1981) no. 3, p. 355 | DOI:10.1090/s0002-9939-1981-0612718-4
  • Bibliography, Enveloping Algebras, Volume 14 (1977), p. 359 | DOI:10.1016/s0924-6509(08)70350-7
  • Deodhar, Vinay V. Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative M�bius function, Inventiones Mathematicae, Volume 39 (1977) no. 2, p. 187 | DOI:10.1007/bf01390109

Cité par 50 documents. Sources : Crossref