In this note we present and comment three equivalent definitions of the so called uniform or Banach density of a set of positive integers.
Mots-clés : Banach density, uniform density
@article{AMBP_2010__17_1_153_0, author = {Grekos, Georges and Toma, Vladim{\'\i}r and Tomanov\'a, Jana}, title = {A note on uniform or {Banach} density}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {153--163}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {17}, number = {1}, year = {2010}, doi = {10.5802/ambp.280}, mrnumber = {2674656}, zbl = {1239.11012}, language = {en}, url = {https://www.numdam.org/articles/10.5802/ambp.280/} }
TY - JOUR AU - Grekos, Georges AU - Toma, Vladimír AU - Tomanová, Jana TI - A note on uniform or Banach density JO - Annales mathématiques Blaise Pascal PY - 2010 SP - 153 EP - 163 VL - 17 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://www.numdam.org/articles/10.5802/ambp.280/ DO - 10.5802/ambp.280 LA - en ID - AMBP_2010__17_1_153_0 ER -
%0 Journal Article %A Grekos, Georges %A Toma, Vladimír %A Tomanová, Jana %T A note on uniform or Banach density %J Annales mathématiques Blaise Pascal %D 2010 %P 153-163 %V 17 %N 1 %I Annales mathématiques Blaise Pascal %U https://www.numdam.org/articles/10.5802/ambp.280/ %R 10.5802/ambp.280 %G en %F AMBP_2010__17_1_153_0
Grekos, Georges; Toma, Vladimír; Tomanová, Jana. A note on uniform or Banach density. Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 1, pp. 153-163. doi : 10.5802/ambp.280. https://www.numdam.org/articles/10.5802/ambp.280/
[1] Sets of recurrence of
[2] Ergodic Ramsey theory, Contemporary Math., Volume 65 (1987), pp. 63-87 | MR | Zbl
[3] Multiple recurrence and nilsequences. With an appendix by Imre Ruzsa, Invent. Math., Volume 160 (2005), pp. 261-303 | DOI | MR | Zbl
[4] Arithmetic Progressions in Lacunary Sets, Rocky Mountain J. Math., Volume 17 (1987), pp. 587-596 | DOI | MR | Zbl
[5] The Uniform Density of Sets of Integers and Fermat’s Last Theorem, C. R. Math. Rep. Acad. Sci. Canada, Volume XII (1990), pp. 1-6 | MR | Zbl
[6] Some linear and some quadratic recursion formulas, I. Nederl. Akad. Wetensch. Proc. Ser. A. 54 = Indagationes Math., Volume 13 (1951), pp. 374-382 | MR | Zbl
[7] Small sum sets and the Faber gap condition, Acta Sci. Math. (Szeged), Volume 47 (1984), pp. 233-237 | MR | Zbl
[8] Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten., Math. Zeitschr., Volume 17 (1923), pp. 228-249 | DOI | MR
[9] Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981 (M. B. Porter Lectures) | MR | Zbl
[10] Remarks on uniform density of sets of integers, Acta Acad. Paed. Agriensis, Sectio Math., Volume 23 (2002), pp. 3-13 | MR | Zbl
[11] Note on difference sets in
[12] Nonstandard methods for upper Banach density problems, Journal of Number Theory, Volume 91 (2001), pp. 20-38 | DOI | MR | Zbl
[13] On certain solutions of the diophantine equation
[14] Problems and theorems in analysis I, Springer-Verlag, Berlin, 1972 | MR | Zbl
[15] Density results on families of diophantine equations with finitely many solutions, L’Enseignement Mathématique, Volume 39 (1993), pp. 3-23 | MR | Zbl
[16] Remarks on Steinhaus Property and Ratio Sets of Positive Integers, Czech. Math. J., Volume 50 (2000), pp. 175-183 | DOI | MR | Zbl
[17] Olivier’s theorem and statistical convergence, Annales Math. Blaise Pascal, Volume 10 (2003), pp. 305-313 | DOI | Numdam | MR | Zbl
[18] Probability theory and combinatorial optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, 69, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997 | MR | Zbl
- Two remarks on the set of recurrent vectors, Journal of Mathematical Analysis and Applications, Volume 541 (2025) no. 1, p. 128686 | DOI:10.1016/j.jmaa.2024.128686
- Combinational Proof for a Theorem Concerning the Upper Banach Density, Bulletin of the Malaysian Mathematical Sciences Society, Volume 47 (2024) no. 3 | DOI:10.1007/s40840-024-01671-x
- Variant of thin sets and their influence in convergence, Filomat, Volume 37 (2023) no. 17, p. 5847 | DOI:10.2298/fil2317847s
- Sets arising as minimal additive complements in the integers, Journal of Number Theory, Volume 247 (2023), p. 15 | DOI:10.1016/j.jnt.2022.12.001
- Almost periodic type functions and densities, Evolution Equations Control Theory, Volume 11 (2022) no. 2, p. 457 | DOI:10.3934/eect.2021008
- Frequently recurrent operators, Journal of Functional Analysis, Volume 283 (2022) no. 12, p. 109713 | DOI:10.1016/j.jfa.2022.109713
- On small sets of integers, The Ramanujan Journal, Volume 57 (2022) no. 1, p. 275 | DOI:10.1007/s11139-020-00371-x
- Representation of ideal convergence as a union and intersection of matrix summability methods, Journal of Mathematical Analysis and Applications, Volume 484 (2020) no. 2, p. 123760 | DOI:10.1016/j.jmaa.2019.123760
- On the notions of upper and lower density, Proceedings of the Edinburgh Mathematical Society, Volume 63 (2020) no. 1, p. 139 | DOI:10.1017/s0013091519000208
- Upper frequent hypercyclicity and related notions, Revista Matemática Complutense, Volume 31 (2018) no. 3, p. 673 | DOI:10.1007/s13163-018-0260-y
- Ramsey Theory Problems over the Integers: Avoiding Generalized Progressions, Combinatorial and Additive Number Theory II, Volume 220 (2017), p. 39 | DOI:10.1007/978-3-319-68032-3_4
- A compendium of results in additive number theory, São Paulo Journal of Mathematical Sciences, Volume 9 (2015) no. 1, p. 97 | DOI:10.1007/s40863-015-0006-4
- Density Versions of Plünnecke Inequality: Epsilon-Delta Approach, Combinatorial and Additive Number Theory, Volume 101 (2014), p. 99 | DOI:10.1007/978-1-4939-1601-6_8
- Plünnecke’s Theorem for asymptotic densities, Transactions of the American Mathematical Society, Volume 363 (2011) no. 10, p. 5059 | DOI:10.1090/s0002-9947-2011-05533-9
Cité par 14 documents. Sources : Crossref