@article{AIHPC_2009__26_6_2581_0, author = {Manfredi, J. J. and Rossi, J. D. and Urbano, J. M.}, title = {$p\left(x\right)${-Harmonic} {Functions} {With} {Unbounded} {Exponent} in a {Subdomain}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2581--2595}, publisher = {Elsevier}, volume = {26}, number = {6}, year = {2009}, doi = {10.1016/j.anihpc.2009.09.008}, mrnumber = {2569909}, zbl = {1180.35242}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2009.09.008/} }
TY - JOUR AU - Manfredi, J. J. AU - Rossi, J. D. AU - Urbano, J. M. TI - $p\left(x\right)$-Harmonic Functions With Unbounded Exponent in a Subdomain JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2581 EP - 2595 VL - 26 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2009.09.008/ DO - 10.1016/j.anihpc.2009.09.008 LA - en ID - AIHPC_2009__26_6_2581_0 ER -
%0 Journal Article %A Manfredi, J. J. %A Rossi, J. D. %A Urbano, J. M. %T $p\left(x\right)$-Harmonic Functions With Unbounded Exponent in a Subdomain %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2581-2595 %V 26 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2009.09.008/ %R 10.1016/j.anihpc.2009.09.008 %G en %F AIHPC_2009__26_6_2581_0
Manfredi, J. J.; Rossi, J. D.; Urbano, J. M. $p\left(x\right)$-Harmonic Functions With Unbounded Exponent in a Subdomain. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 6, pp. 2581-2595. doi : 10.1016/j.anihpc.2009.09.008. https://www.numdam.org/articles/10.1016/j.anihpc.2009.09.008/
[1] Regularity Results for Stationary Electro-Rheological Fluids, Arch. Ration. Mech. Anal. 164 (2002) 213-259. | MR | Zbl
, ,
[2] Gradient Estimates for the
[3] Lecture Notes on Optimal Transport Problems, in: Mathematical Aspects of Evolving Interfaces, Funchal, 2000, Lecture Notes in Math., vol. 1812, Springer, Berlin, 2003, pp. 1-52. | MR | Zbl
,[4] Extensions of Functions Satisfying Lipschitz Conditions, Ark. Mat. 6 (1967) 551-561. | MR | Zbl
,[5] A Tour of the Theory of Absolutely Minimizing Functions, Bull. Amer. Math. Soc. 41 (2004) 439-505. | MR | Zbl
, , ,[6] Fully Nonlinear Neumann Type Conditions for Second-Order Elliptic and Parabolic Equations, J. Differential Equations 106 (1993) 90-106. | MR | Zbl
,
[7] Limits as
[8] A Mixed Problem for the Infinity Laplacian Via Tug-of-War Games, Calc. Var. Partial Differential Equations 34 (2009) 307-320. | MR | Zbl
, , ,[9] User's Guide to Viscosity Solutions of Second Order Partial Differential Equations, Bull. Amer. Math. Soc. 27 (1992) 1-67. | MR | Zbl
, , ,[10] Open Problems in Variable Exponent Lebesgue and Sobolev Spaces, in: , (Eds.), FSDONA04 Proceedings, Milovy, Czech Republic, 2005, pp. 38-58.
, , ,[11] A Capacity Approach to the Poincaré Inequality and Sobolev Imbeddings in Variable Exponent Sobolev Spaces, Rev. Mat. Complut. 17 (2004) 129-146. | MR | Zbl
, ,[12] The Dirichlet Energy Integral and Variable Exponent Sobolev Spaces With Zero Boundary Values, Potential Anal. 25 (2006) 205-222. | MR | Zbl
, , , ,[13] Uniqueness of Lipschitz Extensions: Minimizing the Sup Norm of the Gradient, Arch. Ration. Mech. Anal. 123 (1993) 51-74. | MR | Zbl
,
[14] On Spaces
[15] Notes on the P-Laplace Equation, Report, University of Jyväskylä, Department of Mathematics and Statistics, 102, University of Jyväskylä, Jyväskylä, 2006; available on line at:, http://www.math.jyu.fi/research/reports/rep102.pdf. | MR
,[16] Tug-of-War and the Infinity Laplacian, J. Amer. Math. Soc. 22 (2009) 167-210. | MR
, , , ,[17] Tug-of-War With Noise: a Game Theoretic View of the P-Laplacian, Duke Math. J. 145 (2008) 91-120. | MR
, ,- On asymptotic behavior for a class of diffusion equations involving the fractional
-Laplacian as goes to , Revista Matemática Complutense, Volume 36 (2023) no. 1, p. 221 | DOI:10.1007/s13163-021-00419-6 - Regularity properties for p−dead core problems and their asymptotic limit as p→∞, Journal of the London Mathematical Society, Volume 99 (2019) no. 1, p. 69 | DOI:10.1112/jlms.12161
- The
∞ -eigenvalue problem with a sign-changing weight, Nonlinear Differential Equations and Applications NoDEA, Volume 26 (2019) no. 2 | DOI:10.1007/s00030-019-0561-y - Fractional Sobolev spaces with variable exponents and fractional p ( x ) -Laplacians, Electronic Journal of Qualitative Theory of Differential Equations (2017) no. 76, p. 1 | DOI:10.14232/ejqtde.2017.1.76
- A free boundary optimization problem for the ∞-Laplacian, Journal of Differential Equations, Volume 263 (2017) no. 2, p. 1140 | DOI:10.1016/j.jde.2017.03.010
- The limit as
p → ∞ in the eigenvalue problem for a system of p-Laplacians, Annali di Matematica Pura ed Applicata (1923 -), Volume 195 (2016) no. 5, p. 1771 | DOI:10.1007/s10231-015-0547-2 - A Tour on p(x)-Laplacian Problems When p = ∞, Mathematical Analysis, Approximation Theory and Their Applications, Volume 111 (2016), p. 339 | DOI:10.1007/978-3-319-31281-1_15
- The first nontrivial eigenvalue for a system ofp-Laplacians with Neumann and Dirichlet boundary conditions, Nonlinear Analysis, Volume 137 (2016), p. 381 | DOI:10.1016/j.na.2015.09.019
- The Robin eigenvalue problem for the -Laplacian as, Nonlinear Analysis: Theory, Methods Applications, Volume 91 (2013), p. 32 | DOI:10.1016/j.na.2013.06.005
- Nonlinear diffusion equations driven by the p(·)-Laplacian, Nonlinear Differential Equations and Applications NoDEA, Volume 20 (2013) no. 1, p. 37 | DOI:10.1007/s00030-012-0153-6
- Limits of anisotropic and degenerate elliptic problems, Communications on Pure Applied Analysis, Volume 11 (2012) no. 3, p. 1217 | DOI:10.3934/cpaa.2012.11.1217
- The strong minimum principle for quasisuperminimizers of non-standard growth, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 28 (2011) no. 5, p. 731 | DOI:10.1016/j.anihpc.2011.06.001
- AN ANISOTROPIC INFINITY LAPLACIAN OBTAINED AS THE LIMIT OF THE ANISOTROPIC (p, q)-LAPLACIAN, Communications in Contemporary Mathematics, Volume 13 (2011) no. 06, p. 1057 | DOI:10.1142/s0219199711004543
- Boundedness of solutions of the non-uniformly convex, non-standard growth Laplacian, Complex Variables and Elliptic Equations, Volume 56 (2011) no. 7-9, p. 643 | DOI:10.1080/17476931003728446
- Harnack's inequality and the strongp(⋅)-Laplacian, Journal of Differential Equations, Volume 250 (2011) no. 3, p. 1631 | DOI:10.1016/j.jde.2010.10.006
- On the well-posedness of a two-phase minimization problem, Journal of Mathematical Analysis and Applications, Volume 378 (2011) no. 1, p. 159 | DOI:10.1016/j.jmaa.2011.01.017
- Equivalence of viscosity and weak solutions for the
-Laplacian, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 27 (2010) no. 6, p. 1471 | DOI:10.1016/j.anihpc.2010.09.004 - Overview of differential equations with non-standard growth, Nonlinear Analysis: Theory, Methods Applications, Volume 72 (2010) no. 12, p. 4551 | DOI:10.1016/j.na.2010.02.033
- The limit as of solutions to the inhomogeneous Dirichlet problem of the -Laplacian, Nonlinear Analysis: Theory, Methods Applications, Volume 73 (2010) no. 7, p. 2027 | DOI:10.1016/j.na.2010.05.032
- "Mappings of Finite Distortion and PDE with Nonstandard Growth", International Mathematics Research Notices (2009) | DOI:10.1093/imrn/rnp192
Cité par 20 documents. Sources : Crossref