Asymptotic Spreading of KPP Reactive Fronts in Incompressible Space-Time Random Flows
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 3, pp. 815-839.
@article{AIHPC_2009__26_3_815_0,
     author = {Nolen, James and Xin, Jack},
     title = {Asymptotic {Spreading} of {KPP} {Reactive} {Fronts} in {Incompressible} {Space-Time} {Random} {Flows}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {815--839},
     publisher = {Elsevier},
     volume = {26},
     number = {3},
     year = {2009},
     doi = {10.1016/j.anihpc.2008.02.005},
     mrnumber = {2526403},
     zbl = {1177.35172},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2008.02.005/}
}
TY  - JOUR
AU  - Nolen, James
AU  - Xin, Jack
TI  - Asymptotic Spreading of KPP Reactive Fronts in Incompressible Space-Time Random Flows
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2009
SP  - 815
EP  - 839
VL  - 26
IS  - 3
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2008.02.005/
DO  - 10.1016/j.anihpc.2008.02.005
LA  - en
ID  - AIHPC_2009__26_3_815_0
ER  - 
%0 Journal Article
%A Nolen, James
%A Xin, Jack
%T Asymptotic Spreading of KPP Reactive Fronts in Incompressible Space-Time Random Flows
%J Annales de l'I.H.P. Analyse non linéaire
%D 2009
%P 815-839
%V 26
%N 3
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2008.02.005/
%R 10.1016/j.anihpc.2008.02.005
%G en
%F AIHPC_2009__26_3_815_0
Nolen, James; Xin, Jack. Asymptotic Spreading of KPP Reactive Fronts in Incompressible Space-Time Random Flows. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 3, pp. 815-839. doi : 10.1016/j.anihpc.2008.02.005. https://www.numdam.org/articles/10.1016/j.anihpc.2008.02.005/

[1] Akcoglu M. A., Krengel U., Ergodic Theorems for Superadditive Processes, J. Reine Angew. Math. 323 (1981) 53-67. | MR | Zbl

[2] Ashurst W., Flow-Frequency Effect Upon Huygens Front Propagation, Combust. Theory Model. 4 (2000) 99-105. | Zbl

[3] Berestycki H., Hamel F., Front Propagation in Periodic Excitable Media, Comm. Pure Appl. Math. 60 (2002) 949-1032. | MR | Zbl

[4] Berestycki H., Nirenberg L., Travelling Fronts in Cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992) 497-572. | Numdam | MR | Zbl

[5] Cencini M., Torcini A., Vergni D., Vulpiani A., Thin Front Propagation in Steady and Unsteady Cellular Flows, Phys. Fluids 15 (3) (2003) 679-688. | MR

[6] Clavin P., Williams F. A., Theory of Premixed-Flame Propagation in Large-Scale Turbulence, J. Fluid Mech. 90 (1979) 598-604. | Zbl

[7] Chertkov M., Yakhot V., Hyugens Front Propagation in Turbulent Fluids, Phys. Rev. Lett. 80 (1998) 2837.

[8] Constantin P., Kiselev A., Oberman A., Ryzhik L., Bulk Burning Rate in Passive-Reactive Diffusion, Arch. Rat. Mech. Anal. 154 (2000) 53-91. | MR | Zbl

[9] Denet B., Possible Role of Temporal Correlations in the Bending of Turbulent Flame Velocity, Combust. Theory Model. 3 (1999) 585-589. | Zbl

[10] Freidlin M., Functional Integration and Partial Differential Equations, Ann. of Math. Stud., vol. 109, Princeton University Press, Princeton, NJ, 1985. | MR | Zbl

[11] Freidlin M., Sowers R., A Comparison of Homogenization and Large Deviations, With Applications to Wavefront Propagation, Stochastic Procsess. Appl. 82 (1999) 23-52. | MR | Zbl

[12] Gärtner J., Freidlin M. I., The Propagation of Concentration Waves in Periodic and Random Media, Dokl. Acad. Nauk SSSR 249 (1979) 521-525. | MR | Zbl

[13] Heinze S., Papanicolaou G., Stevens A., Variational Principles for Propagation Speeds in Inhomogeneous Media, SIAM J. Appl. Math 62 (1) (2001) 129-148. | MR | Zbl

[14] Karatzas I., Shreve S., Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1991. | MR | Zbl

[15] Khouider B., Bourlioux A., Majda A., Parameterizing Turbulent Flame Speed - Part I: Unsteady Shears, Flame Residence Time and Bending, Combust. Theory Model. 5 (2001) 295-318. | MR | Zbl

[16] Kosygina E., Rezakhanlou F., Varadhan S. R.S., Stochastic Homogenization of Hamilton-Jacobi-Bellman Equations, Comm. Pure Appl. Math. 59 (10) (2006) 1489-1521. | MR | Zbl

[17] E. Kosygina, S.R.S. Varadhan, Homogenization of Hamilton-Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium, Preprint, 2006. | MR | Zbl

[18] Krylov N. V., Safonov M. V., A Property of the Solutions of Parabolic Equations With Measurable Coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 16 (1) (1981) 151-164, (English translation). | MR | Zbl

[19] Lions P.-L., Souganidis P. E., Homogenization of Viscous Hamilton-Jacobi Equations in Stationary Ergodic Media, Comm. Partial Differential Equations 30 (2005) 335-375. | MR | Zbl

[20] Majda A., Souganidis P. E., Flame Fronts in a Turbulent Combustion Model With Fractal Velocity Fields, Comm. Pure Appl. Math. LI (1998) 1337-1348. | MR | Zbl

[21] Majda A., Souganidis P. E., Large Scale Front  dynamics for Turbulent Reaction-Diffusion Equations With Separated Velocity Scales, Nonlinearity 7 (1994) 1-30. | MR | Zbl

[22] Nolen J., Xin J., Reaction Diffusion Front Speeds in Spatially-Temporally Periodic Shear Flows, SIAM J. Multiscale Modeling and Simulation 1 (4) (2003) 554-570. | MR | Zbl

[23] Nolen J., Xin J., Min-Max Variational Principle and Front Speeds in Random Shear Flows, Methods Appl. Anal. 11 (4) (2004) 635-644. | MR | Zbl

[24] Nolen J., Xin J., Variational Principle of KPP Front Speeds in Temporally Random Shear Flows With Applications, Commun. Math. Phys. 269 (2007) 493-532. | MR | Zbl

[25] J. Nolen, J. Xin, Computing front speeds in randomly perturbed cellular flows by variational principle, Physica D (2008), in press.

[26] Novikov A., Ryzhik L., Bounds on the Speed of Propagation of the KPP Fronts in a Cellular Flow, Arch. Rat. Mech. Anal. 184 (2007) 23-48. | MR | Zbl

[27] Peters N., Turbulent Combustion, Cambridge University Press, 2000. | MR | Zbl

[28] Ronney P., Some Open Issues in Premixed Turbulent Combustion, in: Buckmaster J. D., Takeno T. (Eds.), Modeling in Combustion Science, Lecture Notes in Physics, vol. 449, Springer-Verlag, Berlin, 1995, pp. 3-22.

[29] Souganidis P. E., Stochastic Homogenization of Hamilton-Jacobi Equations and Some Applications, Asymptotic Anal. 20 (1) (1999) 1-11. | MR | Zbl

[30] Varadhan S. R.S., Asymptotic Probabilities and Differential Equations, Comm. Pure Appl. Math. 19 (1966) 261-286. | MR | Zbl

[31] Vladimirova N., Constantin P., Kiselev A., Ruchayskiy O., Ryzhik L., Flame Enhancement and Quenching in Fluid Flows, Combust. Theory Model. 7 (2003) 487-508. | MR | Zbl

[32] Xin J., Front Propagation in Heterogeneous Media, SIAM Rev. 42 (2) (June 2000) 161-230. | MR | Zbl

[33] Xin J., KPP Front Speeds in Random Shears and the Parabolic Anderson Problem, Methods Appl. Anal. 10 (2) (2003) 191-198. | MR | Zbl

[34] Yakhot V., Propagation Velocity of Premixed Turbulent Flames, Combust. Sci. Tech. 60 (1988) 191.

[35] A. Zlatoš, Pulsating front speed-up and quenching of reaction by fast advection, Preprint, 2007. | MR | Zbl

  • Xin, Jack; Yu, Yifeng; Ronney, Paul Lagrangian, game theoretic, and PDE methods for averaging G-equations in turbulent combustion: existence and beyond, Bulletin of the American Mathematical Society, Volume 61 (2024) no. 3, p. 470 | DOI:10.1090/bull/1838
  • Griette, Quentin; Henderson, Christopher; Turanova, Olga Speed-up of traveling waves by negative chemotaxis, Journal of Functional Analysis, Volume 285 (2023) no. 10, p. 110115 | DOI:10.1016/j.jfa.2023.110115
  • Berestycki, Henri; Nadin, Grégoire Asymptotic Spreading for General Heterogeneous Fisher-KPP Type Equations, Memoirs of the American Mathematical Society, Volume 280 (2022) no. 1381 | DOI:10.1090/memo/1381
  • Lyu, Junlong; Wang, Zhongjian; Xin, Jack; Zhang, Zhiwen A Convergent Interacting Particle Method and Computation of KPP Front Speeds in Chaotic Flows, SIAM Journal on Numerical Analysis, Volume 60 (2022) no. 3, p. 1136 | DOI:10.1137/21m1410786
  • Bramburger, Jason J.; Henderson, Christopher The Speed of Traveling Waves in a FKPP-Burgers System, Archive for Rational Mechanics and Analysis, Volume 241 (2021) no. 2, p. 643 | DOI:10.1007/s00205-021-01660-5
  • Liu, Shuang; Liu, Qian; Lam, King-Yeung Asymptotic spreading of interacting species with multiple fronts II: Exponentially decaying initial data, Journal of Differential Equations, Volume 303 (2021), p. 407 | DOI:10.1016/j.jde.2021.09.023
  • Rossi, Luca Stability analysis for semilinear parabolic problems in general unbounded domains, Journal of Functional Analysis, Volume 279 (2020) no. 7, p. 108657 | DOI:10.1016/j.jfa.2020.108657
  • Lin, Jessica; Zlatoš, Andrej Stochastic Homogenization for Reaction–Diffusion Equations, Archive for Rational Mechanics and Analysis, Volume 232 (2019) no. 2, p. 813 | DOI:10.1007/s00205-018-01334-9
  • Wang, Zhenzhen; Huang, Zhehao; Liu, Zhengrong Stochastic traveling waves of a stochastic Fisher–KPP equation and bifurcations for asymptotic behaviors, Stochastics and Dynamics, Volume 19 (2019) no. 04, p. 1950028 | DOI:10.1142/s021949371950028x
  • Rossi, Luca The Freidlin–Gärtner formula for general reaction terms, Advances in Mathematics, Volume 317 (2017), p. 267 | DOI:10.1016/j.aim.2017.07.002
  • Huang, Zhehao; Liu, Zhengrong Random traveling wave and bifurcations of asymptotic behaviors in the stochastic KPP equation driven by dual noises, Journal of Differential Equations, Volume 261 (2016) no. 2, p. 1317 | DOI:10.1016/j.jde.2016.04.003
  • Wang, Xiaohu; Lu, Kening; Wang, Bixiang Exponential Stability of Non-Autonomous Stochastic Delay Lattice Systems with Multiplicative Noise, Journal of Dynamics and Differential Equations, Volume 28 (2016) no. 3-4, p. 1309 | DOI:10.1007/s10884-015-9448-8
  • Zu, Penghe; Chen, Long; Xin, Jack A computational study of residual KPP front speeds in time-periodic cellular flows in the small diffusion limit, Physica D: Nonlinear Phenomena, Volume 311-312 (2015), p. 37 | DOI:10.1016/j.physd.2015.07.001
  • Wang, Bixiang Existence, stability and bifurcation of random complete and periodic solutions of stochastic parabolic equations, Nonlinear Analysis: Theory, Methods Applications, Volume 103 (2014), p. 9 | DOI:10.1016/j.na.2014.02.013
  • Xin, Jack; Yu, Yifeng Asymptotic Growth Rates and Strong Bending of Turbulent Flame Speeds of G-Equation in Steady Two-Dimensional Incompressible Periodic Flows, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 4, p. 2444 | DOI:10.1137/130929990
  • Xin, Jack; Yu, Yifeng Sharp asymptotic growth laws of turbulent flame speeds in cellular flows by inviscid Hamilton–Jacobi models, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 30 (2013) no. 6, p. 1049 | DOI:10.1016/j.anihpc.2012.11.004
  • Liu, Y-Y; Xin, J.; Yu, Y.; Crooks, Elaine; Davidson, Fordyce; Kazmierczak, Bogdan; Nadin, Gregoire; Tsai, Je-Chiang Turbulent Flame Speeds of G-equation Models in Unsteady Cellular Flows, Mathematical Modelling of Natural Phenomena, Volume 8 (2013) no. 3, p. 198 | DOI:10.1051/mmnp/20138312
  • Liu, Yu-Yu; Xin, Jack; Yu, Yifeng A numerical study of turbulent flame speeds of curvature and strain G-equations in cellular flows, Physica D: Nonlinear Phenomena, Volume 243 (2013) no. 1, p. 20 | DOI:10.1016/j.physd.2012.09.008
  • Garnier, Jimmy; Giletti, Thomas; Nadin, Gregoire Maximal and Minimal Spreading Speeds for Reaction Diffusion Equations in Nonperiodic Slowly Varying Media, Journal of Dynamics and Differential Equations, Volume 24 (2012) no. 3, p. 521 | DOI:10.1007/s10884-012-9254-5
  • Berestycki, Henri; Nadin, Grégoire Spreading speeds for one-dimensional monostable reaction-diffusion equations, Journal of Mathematical Physics, Volume 53 (2012) no. 11 | DOI:10.1063/1.4764932
  • Wenxian Shen EXISTENCE OF GENERALIZED TRAVELING WAVES IN TIME RECURRENT AND SPACE PERIODIC MONOSTABLE EQUATIONS, Journal of Applied Analysis Computation, Volume 1 (2011) no. 1, p. 69 | DOI:10.11948/2011006
  • Shen, Wenxian Existence, Uniqueness, and Stability of Generalized Traveling Waves in Time Dependent Monostable Equations, Journal of Dynamics and Differential Equations, Volume 23 (2011) no. 1, p. 1 | DOI:10.1007/s10884-010-9200-3
  • Nolen, James A central limit theorem for pulled fronts in a random medium, Networks Heterogeneous Media, Volume 6 (2011) no. 2, p. 167 | DOI:10.3934/nhm.2011.6.167
  • Arbogast, Todd; Huang, Chieh-Sen A fully conservative Eulerian–Lagrangian method for a convection–diffusion problem in a solenoidal field, Journal of Computational Physics, Volume 229 (2010) no. 9, p. 3415 | DOI:10.1016/j.jcp.2010.01.009
  • Berestycki, Henri; Hamel, François; Nadin, Grégoire Asymptotic spreading in heterogeneous diffusive excitable media, Journal of Functional Analysis, Volume 255 (2008) no. 9, p. 2146 | DOI:10.1016/j.jfa.2008.06.030
  • Nolen, James; Xin, Jack Computing reactive front speeds in random flows by variational principle, Physica D: Nonlinear Phenomena, Volume 237 (2008) no. 23, p. 3172 | DOI:10.1016/j.physd.2008.04.024

Cité par 26 documents. Sources : Crossref