Global Boundary Controllability of the Saint-Venant System for Sloped Canals With Friction
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 1, pp. 257-270.
@article{AIHPC_2009__26_1_257_0,
     author = {Gugat, M. and Leugering, G.},
     title = {Global {Boundary} {Controllability} of the {Saint-Venant} {System} for {Sloped} {Canals} {With} {Friction}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {257--270},
     publisher = {Elsevier},
     volume = {26},
     number = {1},
     year = {2009},
     doi = {10.1016/j.anihpc.2008.01.002},
     mrnumber = {2483821},
     zbl = {1154.76009},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2008.01.002/}
}
TY  - JOUR
AU  - Gugat, M.
AU  - Leugering, G.
TI  - Global Boundary Controllability of the Saint-Venant System for Sloped Canals With Friction
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2009
SP  - 257
EP  - 270
VL  - 26
IS  - 1
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2008.01.002/
DO  - 10.1016/j.anihpc.2008.01.002
LA  - en
ID  - AIHPC_2009__26_1_257_0
ER  - 
%0 Journal Article
%A Gugat, M.
%A Leugering, G.
%T Global Boundary Controllability of the Saint-Venant System for Sloped Canals With Friction
%J Annales de l'I.H.P. Analyse non linéaire
%D 2009
%P 257-270
%V 26
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2008.01.002/
%R 10.1016/j.anihpc.2008.01.002
%G en
%F AIHPC_2009__26_1_257_0
Gugat, M.; Leugering, G. Global Boundary Controllability of the Saint-Venant System for Sloped Canals With Friction. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 1, pp. 257-270. doi : 10.1016/j.anihpc.2008.01.002. https://www.numdam.org/articles/10.1016/j.anihpc.2008.01.002/

[1] Cirina M., Boundary Controllability of Nonlinear Hyperbolic Systems, SIAM J. Control 7 (1969) 198-212. | MR | Zbl

[2] Cirina M., Nonlinear Hyperbolic Problems With Solutions on Preassigned Sets, Michigan Math. J. 17 (1970) 193-209. | MR | Zbl

[3] De Halleux J., Prieur C., Coron J.-M., D'Andréa Novel B., Bastin G., Boundary Feedback Control in Networks of Open Channels, Automatica 39 (2003) 1365-1376. | MR | Zbl

[4] De Saint-Venant B., Theorie Du Mouvement Non-Permanent Des Eaux Avec Application Aux Crues Des Rivières Et À L'introduction Des Marees Dans Leur Lit, Comptes Rendus Academie des Sciences 73 (1871) 148-154, 237-240. | JFM

[5] Graf W. H., Fluvial Hydraulics, J. Wiley and Sons, Chichester, 1998.

[6] Gugat M., Boundary Controllability Between Sub- and Supercritical Flow, SIAM J. Control Optim. 42 (2003) 1056-1070. | MR | Zbl

[7] Gugat M., Optimal Nodal Control of Networked Hyperbolic Systems: Evaluation of Derivatives, Adv. Modeling Optim. 7 (2005) 9-37. | MR | Zbl

[8] Gugat M., Leugering G., Global Boundary Controllability of the De St. Venant Equations Between Steady States, Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 1-11. | Numdam | MR | Zbl

[9] Gugat M., Leugering G., Schmidt E. J.P. G., Global Controllability Between Steady Supercritical Flows in Channel Networks, Math. Methods Appl. Sci. 27 (2004) 781-802. | MR | Zbl

[10] Leugering G., Georg Schmidt E. J.P., On the Modelling and Stabilisation of Flows in Networks of Open Canals, SIAM J. Control Optim. 41 (2002) 164-180. | MR | Zbl

[11] Li T., Exact Boundary Controllability of Unsteady Flows in a Network of Open Canals, Math. Nachr. 278 (2005) 278-289. | MR | Zbl

[12] Lions J. L., Exact Controllability, Stabilization and Perturbations of Distributed Systems, SIAM Rev. 30 (1988) 1-68. | MR | Zbl

[13] Roberson J. A., Cassidy J. J., Chaudhry M. H., Hydraulic Engineering, John Wiley, New York, 1995.

[14] Wang Z., Li T., Global Exact Boundary Controllability for First Order Quasilinear Hyperbolic Systems of Diagonal Form, Int. J. Dynamical Systems and Differential Equations 1 (2007) 12-19. | MR | Zbl

[15] Li T., Rao B., Exact Boundary Controllability for Quasilinear Hyperbolic Systems, SIAM J. Control Optim. 41 (2003) 1748-1755. | MR | Zbl

[16] Li T., Yi J., Semi-Global Solution to the Mixed Initial-Boundary Value Problem for Quasilinear Hyperbolic Systems, Chinese Ann. Math. 22 (2001) 325-336. | MR | Zbl

[17] Wang Z., Exact Controllability for Nonautonomous First Order Quasilinear Hyperbolic Systems, Chinese Ann. Math. Ser. B 27 (2006) 643-656. | MR

[18] Zuazua E., Controllability of Partial Differential Equations: Some Results and Open Problems, in: Dafermos C., Feireisl E. (Eds.), Handbook of Differential Equations: Evolutionary Differential Equations, Elsevier Science, 2006.

  • Avdonin, Sergei; Avdonina, Nina; Sus, Olha Inverse dynamic problem for the Dirac system on finite metric graphs and the leaf peeling method, Journal of Physics A: Mathematical and Theoretical, Volume 58 (2025) no. 5, p. 055203 | DOI:10.1088/1751-8121/adadcb
  • Avdonin, Sergei A.; Mikhaylov, Alexander S.; Mikhaylov, Victor S.; Choque‐Rivero, Abdon E. Discretization of the Wave Equation on a Metric Graph, Mathematical Methods in the Applied Sciences, Volume 48 (2025) no. 5, p. 5708 | DOI:10.1002/mma.10630
  • Gugat, Martin; Huang, Xu; Wang, Zhiqiang Constrained exact boundary controllability of a quasilinear model for pipeline gas flow, Applicable Analysis (2024), p. 1 | DOI:10.1080/00036811.2024.2432529
  • Wang, Libin; Zhang, Mingming Simultaneous Exact Boundary Controllability of Final State and Nodal Profile for Quasilinear Hyperbolic Systems, Applied Mathematics Optimization, Volume 89 (2024) no. 2 | DOI:10.1007/s00245-024-10111-y
  • Wang, Libin; Zhang, Yutao Exact Boundary Controllability of Nodal Profile for Nonautonomous Quasilinear Hyperbolic Systems, Journal of Dynamical and Control Systems, Volume 30 (2024) no. 1 | DOI:10.1007/s10883-024-09678-0
  • Wang, Ke; Wang, Libin Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems and Its Asymptotic Stability, SIAM Journal on Control and Optimization, Volume 61 (2023) no. 1, p. 1 | DOI:10.1137/21m1464270
  • Briani, M.; Puppo, G.; Ribot, M. Angle dependence in coupling conditions for shallow water equations at channel junctions, Computers Mathematics with Applications, Volume 108 (2022), p. 49 | DOI:10.1016/j.camwa.2021.12.021
  • Bayen, Alexandre; Monache, Maria Laura Delle; Garavello, Mauro; Goatin, Paola; Piccoli, Benedetto Boundary Control of Conservation Laws Exhibiting Shocks, Control Problems for Conservation Laws with Traffic Applications, Volume 99 (2022), p. 5 | DOI:10.1007/978-3-030-93015-8_2
  • Hayat, Amaury Boundary stabilization of 1D hyperbolic systems, Annual Reviews in Control, Volume 52 (2021), p. 222 | DOI:10.1016/j.arcontrol.2021.10.009
  • Qiao, Yu; Li, Jiahong; Cui, Wei; Long, Yan; Lei, Xiaohui Simulation and optimal control for a long‐distance water diversion project under different rainfall types: A case study in the Middle Route of China's South‐to‐North Water Diversion Project*, Irrigation and Drainage, Volume 70 (2021) no. 5, p. 1314 | DOI:10.1002/ird.2627
  • Hayat, Amaury; Shang, Peipei Exponential stability of density-velocity systems with boundary conditions and source term for the H2 norm, Journal de Mathématiques Pures et Appliquées, Volume 153 (2021), p. 187 | DOI:10.1016/j.matpur.2021.07.001
  • Avdonin, Sergei; Edward, Julian An inverse problem for quantum trees with observations at interior vertices, Networks Heterogeneous Media, Volume 16 (2021) no. 2, p. 317 | DOI:10.3934/nhm.2021008
  • Wang, Libin; Wang, Ke Asymptotic stability of the exact boundary controllability of nodal profile for quasilinear hyperbolic systems, ESAIM: Control, Optimisation and Calculus of Variations, Volume 26 (2020), p. 67 | DOI:10.1051/cocv/2019050
  • Leugering, Günter Partial Differential Equations on Metric Graphs: A Survey of Results on Optimization, Control, and Stabilizability Problems with Special Focus on Shape and Topological Sensitivity Problems, Mathematical Modelling, Optimization, Analytic and Numerical Solutions (2020), p. 77 | DOI:10.1007/978-981-15-0928-5_4
  • Avdonin, Sergei; Edward, Julian An Inverse Problem for Quantum Trees with Delta-Prime Vertex Conditions, Vibration, Volume 3 (2020) no. 4, p. 448 | DOI:10.3390/vibration3040028
  • Zhuang, Kaili; Leugering, Günter; Li, Tatsien Exact boundary controllability of nodal profile for Saint-Venant system on a network with loops, Journal de Mathématiques Pures et Appliquées, Volume 129 (2019), p. 34 | DOI:10.1016/j.matpur.2018.10.001
  • Prieur, Christophe; Winkin, Joseph J. Boundary feedback control of linear hyperbolic systems: Application to the Saint-Venant–Exner equations, Automatica, Volume 89 (2018), p. 44 | DOI:10.1016/j.automatica.2017.11.028
  • Gugat, Martin; Perrollaz, Vincent; Rosier, Lionel Boundary stabilization of quasilinear hyperbolic systems of balance laws: exponential decay for small source terms, Journal of Evolution Equations, Volume 18 (2018) no. 3, p. 1471 | DOI:10.1007/s00028-018-0449-z
  • Blandin, Sebastien; Litrico, Xavier; Delle Monache, Maria Laura; Piccoli, Benedetto; Bayen, Alexandre Regularity and Lyapunov Stabilization of Weak Entropy Solutions to Scalar Conservation Laws, IEEE Transactions on Automatic Control, Volume 62 (2017) no. 4, p. 1620 | DOI:10.1109/tac.2016.2590598
  • Hante, Falk M.; Leugering, Günter; Martin, Alexander; Schewe, Lars; Schmidt, Martin Challenges in Optimal Control Problems for Gas and Fluid Flow in Networks of Pipes and Canals: From Modeling to Industrial Applications, Industrial Mathematics and Complex Systems (2017), p. 77 | DOI:10.1007/978-981-10-3758-0_5
  • Gugat, Martin; Ulbrich, Stefan The isothermal Euler equations for ideal gas with source term: Product solutions, flow reversal and no blow up, Journal of Mathematical Analysis and Applications, Volume 454 (2017) no. 1, p. 439 | DOI:10.1016/j.jmaa.2017.04.064
  • Wu, Ziqiang Wu; Cen, Lihui; Zhang, Shaohui; Chen, Xiaofang; Lin, Shu, 2016 35th Chinese Control Conference (CCC) (2016), p. 2596 | DOI:10.1109/chicc.2016.7553755
  • Liu, Cunming; Qu, Peng Global exact boundary controllability for general first-order quasilinear hyperbolic systems, Chinese Annals of Mathematics, Series B, Volume 36 (2015) no. 6, p. 895 | DOI:10.1007/s11401-015-0968-7
  • Kimmerle, Sven-Joachim; Gerdts, Matthias, Dynamical Systems and Differential Equations, AIMS Proceedings 2015 Proceedings of the 10th AIMS International Conference (Madrid, Spain) (2015), p. 515 | DOI:10.3934/proc.2015.0515
  • Tang, Ying; Prieur, Christophe; Girard, Antoine, 53rd IEEE Conference on Decision and Control (2014), p. 2840 | DOI:10.1109/cdc.2014.7039825
  • Perrollaz, Vincent; Rosier, Lionel Finite-Time Stabilization of 2×2 Hyperbolic Systems on Tree-Shaped Networks, SIAM Journal on Control and Optimization, Volume 52 (2014) no. 1, p. 143 | DOI:10.1137/130910762
  • Ondo, Diemer Anda; Lefèvre, Laurent; Chopard, Bastien Boundary port variables and uniform controllability: the shallow water example, IFAC Proceedings Volumes, Volume 46 (2013) no. 26, p. 103 | DOI:10.3182/20130925-3-fr-4043.00064
  • Clément, Frédérique; Coron, Jean-Michel; Shang, Peipei Optimal Control of Cell Mass and Maturity in a Model of Follicular Ovulation, SIAM Journal on Control and Optimization, Volume 51 (2013) no. 2, p. 824 | DOI:10.1137/120862247
  • Dick, Markus; Gugat, Martin; Leugering, Gunter, 2012 17th International Conference on Methods Models in Automation Robotics (MMAR) (2012), p. 125 | DOI:10.1109/mmar.2012.6347931
  • Gugat, Martin; Herty, Michael; Klar, Axel; Leugering, Günther; Schleper, Veronika Well-posedness of Networked Hyperbolic Systems of Balance Laws, Constrained Optimization and Optimal Control for Partial Differential Equations, Volume 160 (2012), p. 123 | DOI:10.1007/978-3-0348-0133-1_7
  • Dick, M.; Gugat, M.; Herty, M.; Steffensen, S. On the relaxation approximation of boundary control of the isothermal Euler equations, International Journal of Control, Volume 85 (2012) no. 11, p. 1766 | DOI:10.1080/00207179.2012.703787
  • Prieur, Christophe; Mazenc, Frédéric ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws, Mathematics of Control, Signals, and Systems, Volume 24 (2012) no. 1-2, p. 111 | DOI:10.1007/s00498-012-0074-2
  • Gugat, Martin; Herty, Michaël Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 1, p. 28 | DOI:10.1051/cocv/2009035
  • Prieur, Christophe; Mazenc, Frederic, IEEE Conference on Decision and Control and European Control Conference (2011), p. 4915 | DOI:10.1109/cdc.2011.6160401
  • Wang, Ke Global exact boundary controllability for 1-D quasilinear wave equations, Mathematical Methods in the Applied Sciences, Volume 34 (2011) no. 3, p. 315 | DOI:10.1002/mma.1358
  • Gugat, M.; Herty, M.; Schleper, V. Flow control in gas networks: Exact controllability to a given demand, Mathematical Methods in the Applied Sciences, Volume 34 (2011) no. 7, p. 745 | DOI:10.1002/mma.1394
  • Knuppel, Torsten; Woittennek, Frank; Rudolph, Joachim, 49th IEEE Conference on Decision and Control (CDC) (2010), p. 2960 | DOI:10.1109/cdc.2010.5717438
  • Leugering, Günter; Martin, Alexander; Stingl, Michael Topology and Dynamic Networks: Optimization with Application in Future Technologies, Production Factor Mathematics (2010), p. 263 | DOI:10.1007/978-3-642-11248-5_14

Cité par 38 documents. Sources : Crossref