@article{AIHPC_2009__26_1_257_0, author = {Gugat, M. and Leugering, G.}, title = {Global {Boundary} {Controllability} of the {Saint-Venant} {System} for {Sloped} {Canals} {With} {Friction}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {257--270}, publisher = {Elsevier}, volume = {26}, number = {1}, year = {2009}, doi = {10.1016/j.anihpc.2008.01.002}, mrnumber = {2483821}, zbl = {1154.76009}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2008.01.002/} }
TY - JOUR AU - Gugat, M. AU - Leugering, G. TI - Global Boundary Controllability of the Saint-Venant System for Sloped Canals With Friction JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 257 EP - 270 VL - 26 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2008.01.002/ DO - 10.1016/j.anihpc.2008.01.002 LA - en ID - AIHPC_2009__26_1_257_0 ER -
%0 Journal Article %A Gugat, M. %A Leugering, G. %T Global Boundary Controllability of the Saint-Venant System for Sloped Canals With Friction %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 257-270 %V 26 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2008.01.002/ %R 10.1016/j.anihpc.2008.01.002 %G en %F AIHPC_2009__26_1_257_0
Gugat, M.; Leugering, G. Global Boundary Controllability of the Saint-Venant System for Sloped Canals With Friction. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 1, pp. 257-270. doi : 10.1016/j.anihpc.2008.01.002. https://www.numdam.org/articles/10.1016/j.anihpc.2008.01.002/
[1] Boundary Controllability of Nonlinear Hyperbolic Systems, SIAM J. Control 7 (1969) 198-212. | MR | Zbl
,[2] Nonlinear Hyperbolic Problems With Solutions on Preassigned Sets, Michigan Math. J. 17 (1970) 193-209. | MR | Zbl
,[3] Boundary Feedback Control in Networks of Open Channels, Automatica 39 (2003) 1365-1376. | MR | Zbl
, , , , ,[4] Theorie Du Mouvement Non-Permanent Des Eaux Avec Application Aux Crues Des Rivières Et À L'introduction Des Marees Dans Leur Lit, Comptes Rendus Academie des Sciences 73 (1871) 148-154, 237-240. | JFM
,[5] Fluvial Hydraulics, J. Wiley and Sons, Chichester, 1998.
,[6] Boundary Controllability Between Sub- and Supercritical Flow, SIAM J. Control Optim. 42 (2003) 1056-1070. | MR | Zbl
,[7] Optimal Nodal Control of Networked Hyperbolic Systems: Evaluation of Derivatives, Adv. Modeling Optim. 7 (2005) 9-37. | MR | Zbl
,[8] Global Boundary Controllability of the De St. Venant Equations Between Steady States, Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 1-11. | Numdam | MR | Zbl
, ,[9] Global Controllability Between Steady Supercritical Flows in Channel Networks, Math. Methods Appl. Sci. 27 (2004) 781-802. | MR | Zbl
, , ,[10] On the Modelling and Stabilisation of Flows in Networks of Open Canals, SIAM J. Control Optim. 41 (2002) 164-180. | MR | Zbl
, ,[11] Exact Boundary Controllability of Unsteady Flows in a Network of Open Canals, Math. Nachr. 278 (2005) 278-289. | MR | Zbl
,[12] Exact Controllability, Stabilization and Perturbations of Distributed Systems, SIAM Rev. 30 (1988) 1-68. | MR | Zbl
,[13] Hydraulic Engineering, John Wiley, New York, 1995.
, , ,[14] Global Exact Boundary Controllability for First Order Quasilinear Hyperbolic Systems of Diagonal Form, Int. J. Dynamical Systems and Differential Equations 1 (2007) 12-19. | MR | Zbl
, ,[15] Exact Boundary Controllability for Quasilinear Hyperbolic Systems, SIAM J. Control Optim. 41 (2003) 1748-1755. | MR | Zbl
, ,[16] Semi-Global Solution to the Mixed Initial-Boundary Value Problem for Quasilinear Hyperbolic Systems, Chinese Ann. Math. 22 (2001) 325-336. | MR | Zbl
, ,[17] Exact Controllability for Nonautonomous First Order Quasilinear Hyperbolic Systems, Chinese Ann. Math. Ser. B 27 (2006) 643-656. | MR
,[18] Controllability of Partial Differential Equations: Some Results and Open Problems, in: , (Eds.), Handbook of Differential Equations: Evolutionary Differential Equations, Elsevier Science, 2006.
,- Inverse dynamic problem for the Dirac system on finite metric graphs and the leaf peeling method, Journal of Physics A: Mathematical and Theoretical, Volume 58 (2025) no. 5, p. 055203 | DOI:10.1088/1751-8121/adadcb
- Discretization of the Wave Equation on a Metric Graph, Mathematical Methods in the Applied Sciences, Volume 48 (2025) no. 5, p. 5708 | DOI:10.1002/mma.10630
- Constrained exact boundary controllability of a quasilinear model for pipeline gas flow, Applicable Analysis (2024), p. 1 | DOI:10.1080/00036811.2024.2432529
- Simultaneous Exact Boundary Controllability of Final State and Nodal Profile for Quasilinear Hyperbolic Systems, Applied Mathematics Optimization, Volume 89 (2024) no. 2 | DOI:10.1007/s00245-024-10111-y
- Exact Boundary Controllability of Nodal Profile for Nonautonomous Quasilinear Hyperbolic Systems, Journal of Dynamical and Control Systems, Volume 30 (2024) no. 1 | DOI:10.1007/s10883-024-09678-0
- Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems and Its Asymptotic Stability, SIAM Journal on Control and Optimization, Volume 61 (2023) no. 1, p. 1 | DOI:10.1137/21m1464270
- Angle dependence in coupling conditions for shallow water equations at channel junctions, Computers Mathematics with Applications, Volume 108 (2022), p. 49 | DOI:10.1016/j.camwa.2021.12.021
- Boundary Control of Conservation Laws Exhibiting Shocks, Control Problems for Conservation Laws with Traffic Applications, Volume 99 (2022), p. 5 | DOI:10.1007/978-3-030-93015-8_2
- Boundary stabilization of 1D hyperbolic systems, Annual Reviews in Control, Volume 52 (2021), p. 222 | DOI:10.1016/j.arcontrol.2021.10.009
- Simulation and optimal control for a long‐distance water diversion project under different rainfall types: A case study in the Middle Route of China's South‐to‐North Water Diversion Project*, Irrigation and Drainage, Volume 70 (2021) no. 5, p. 1314 | DOI:10.1002/ird.2627
- Exponential stability of density-velocity systems with boundary conditions and source term for the H2 norm, Journal de Mathématiques Pures et Appliquées, Volume 153 (2021), p. 187 | DOI:10.1016/j.matpur.2021.07.001
- An inverse problem for quantum trees with observations at interior vertices, Networks Heterogeneous Media, Volume 16 (2021) no. 2, p. 317 | DOI:10.3934/nhm.2021008
- Asymptotic stability of the exact boundary controllability of nodal profile for quasilinear hyperbolic systems, ESAIM: Control, Optimisation and Calculus of Variations, Volume 26 (2020), p. 67 | DOI:10.1051/cocv/2019050
- Partial Differential Equations on Metric Graphs: A Survey of Results on Optimization, Control, and Stabilizability Problems with Special Focus on Shape and Topological Sensitivity Problems, Mathematical Modelling, Optimization, Analytic and Numerical Solutions (2020), p. 77 | DOI:10.1007/978-981-15-0928-5_4
- An Inverse Problem for Quantum Trees with Delta-Prime Vertex Conditions, Vibration, Volume 3 (2020) no. 4, p. 448 | DOI:10.3390/vibration3040028
- Exact boundary controllability of nodal profile for Saint-Venant system on a network with loops, Journal de Mathématiques Pures et Appliquées, Volume 129 (2019), p. 34 | DOI:10.1016/j.matpur.2018.10.001
- Boundary feedback control of linear hyperbolic systems: Application to the Saint-Venant–Exner equations, Automatica, Volume 89 (2018), p. 44 | DOI:10.1016/j.automatica.2017.11.028
- Boundary stabilization of quasilinear hyperbolic systems of balance laws: exponential decay for small source terms, Journal of Evolution Equations, Volume 18 (2018) no. 3, p. 1471 | DOI:10.1007/s00028-018-0449-z
- Regularity and Lyapunov Stabilization of Weak Entropy Solutions to Scalar Conservation Laws, IEEE Transactions on Automatic Control, Volume 62 (2017) no. 4, p. 1620 | DOI:10.1109/tac.2016.2590598
- Challenges in Optimal Control Problems for Gas and Fluid Flow in Networks of Pipes and Canals: From Modeling to Industrial Applications, Industrial Mathematics and Complex Systems (2017), p. 77 | DOI:10.1007/978-981-10-3758-0_5
- The isothermal Euler equations for ideal gas with source term: Product solutions, flow reversal and no blow up, Journal of Mathematical Analysis and Applications, Volume 454 (2017) no. 1, p. 439 | DOI:10.1016/j.jmaa.2017.04.064
- , 2016 35th Chinese Control Conference (CCC) (2016), p. 2596 | DOI:10.1109/chicc.2016.7553755
- Global exact boundary controllability for general first-order quasilinear hyperbolic systems, Chinese Annals of Mathematics, Series B, Volume 36 (2015) no. 6, p. 895 | DOI:10.1007/s11401-015-0968-7
- , Dynamical Systems and Differential Equations, AIMS Proceedings 2015 Proceedings of the 10th AIMS International Conference (Madrid, Spain) (2015), p. 515 | DOI:10.3934/proc.2015.0515
- , 53rd IEEE Conference on Decision and Control (2014), p. 2840 | DOI:10.1109/cdc.2014.7039825
- Finite-Time Stabilization of
Hyperbolic Systems on Tree-Shaped Networks, SIAM Journal on Control and Optimization, Volume 52 (2014) no. 1, p. 143 | DOI:10.1137/130910762 - Boundary port variables and uniform controllability: the shallow water example, IFAC Proceedings Volumes, Volume 46 (2013) no. 26, p. 103 | DOI:10.3182/20130925-3-fr-4043.00064
- Optimal Control of Cell Mass and Maturity in a Model of Follicular Ovulation, SIAM Journal on Control and Optimization, Volume 51 (2013) no. 2, p. 824 | DOI:10.1137/120862247
- , 2012 17th International Conference on Methods Models in Automation Robotics (MMAR) (2012), p. 125 | DOI:10.1109/mmar.2012.6347931
- Well-posedness of Networked Hyperbolic Systems of Balance Laws, Constrained Optimization and Optimal Control for Partial Differential Equations, Volume 160 (2012), p. 123 | DOI:10.1007/978-3-0348-0133-1_7
- On the relaxation approximation of boundary control of the isothermal Euler equations, International Journal of Control, Volume 85 (2012) no. 11, p. 1766 | DOI:10.1080/00207179.2012.703787
- ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws, Mathematics of Control, Signals, and Systems, Volume 24 (2012) no. 1-2, p. 111 | DOI:10.1007/s00498-012-0074-2
- Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 1, p. 28 | DOI:10.1051/cocv/2009035
- , IEEE Conference on Decision and Control and European Control Conference (2011), p. 4915 | DOI:10.1109/cdc.2011.6160401
- Global exact boundary controllability for 1-D quasilinear wave equations, Mathematical Methods in the Applied Sciences, Volume 34 (2011) no. 3, p. 315 | DOI:10.1002/mma.1358
- Flow control in gas networks: Exact controllability to a given demand, Mathematical Methods in the Applied Sciences, Volume 34 (2011) no. 7, p. 745 | DOI:10.1002/mma.1394
- , 49th IEEE Conference on Decision and Control (CDC) (2010), p. 2960 | DOI:10.1109/cdc.2010.5717438
- Topology and Dynamic Networks: Optimization with Application in Future Technologies, Production Factor Mathematics (2010), p. 263 | DOI:10.1007/978-3-642-11248-5_14
Cité par 38 documents. Sources : Crossref