@article{AIHPC_2007__24_5_795_0, author = {Costin, O. and Tanveer, S.}, title = {Nonlinear evolution {PDEs} in ${R}^{+}\times {C}^{d}$ : existence and uniqueness of solutions, asymptotic and {Borel} summability properties}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {795--823}, publisher = {Elsevier}, volume = {24}, number = {5}, year = {2007}, doi = {10.1016/j.anihpc.2006.07.002}, mrnumber = {2348053}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.07.002/} }
TY - JOUR AU - Costin, O. AU - Tanveer, S. TI - Nonlinear evolution PDEs in ${R}^{+}\times {C}^{d}$ : existence and uniqueness of solutions, asymptotic and Borel summability properties JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 795 EP - 823 VL - 24 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2006.07.002/ DO - 10.1016/j.anihpc.2006.07.002 LA - en ID - AIHPC_2007__24_5_795_0 ER -
%0 Journal Article %A Costin, O. %A Tanveer, S. %T Nonlinear evolution PDEs in ${R}^{+}\times {C}^{d}$ : existence and uniqueness of solutions, asymptotic and Borel summability properties %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 795-823 %V 24 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2006.07.002/ %R 10.1016/j.anihpc.2006.07.002 %G en %F AIHPC_2007__24_5_795_0
Costin, O.; Tanveer, S. Nonlinear evolution PDEs in ${R}^{+}\times {C}^{d}$ : existence and uniqueness of solutions, asymptotic and Borel summability properties. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 5, pp. 795-823. doi : 10.1016/j.anihpc.2006.07.002. http://www.numdam.org/articles/10.1016/j.anihpc.2006.07.002/
[1] From Divergent Power Series to Analytic Functions, Springer-Verlag, Berlin, 1994. | MR | Zbl
,[2] W. Balser, Multisummability of formal power series solutions of partial differential equations with constant coefficients, preprint. | MR | Zbl
[3] Divergent solutions of the heat equation: on an article of Lutz, Miyake and Schäfke, Pacific J. Math. 188 (1) (1999) 53-63. | MR | Zbl
,[4] Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, 1978, Springer-Verlag, 1999. | MR | Zbl
, ,[5] On Borel summation and Stokes phenomena for rank-1 nonlinear systems of ordinary differential equations, Duke Math. J. 93 (2) (1998) 289. | MR | Zbl
,[6] On the formation of singularities of solutions of nonlinear differential systems in antistokes directions, Invent. Math. 45 (3) (2001) 425-485. | MR | Zbl
, ,[7] Existence and uniqueness for a class of nonlinear higher-order partial differential equations in the complex plane, Comm. Pure Appl. Math. LIII (2000) 1092-1117. | MR | Zbl
, ,[8] Topological construction of transseries and introduction to generalized Borel summability, in: Analyzable Functions and Applications, Contemp. Math., vol. 373, Amer. Math. Soc., Providence, RI, 2005, pp. 137-175. | MR | Zbl
,[9] O. Costin, S. Tanveer, Complex singularity analysis for a nonlinear PDE, Comm. PDE, in press.
[10] Bifurcations and Periodic Orbits of Vector Fields, NATO ASI Series, vol. 408, 1993.
,[11] Fonctions analysables et preuve constructive de la conjecture de Dulac, Hermann, Paris, 1992. | MR
,[12] On the Borel summability of divergent solutions of the heat equation, Nagoya Math. J. 154 (1999) 1. | MR | Zbl
, , ,[13] Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Comm. Math. Phys. 192 (1998) 433-461. | Zbl
, ,[14] Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Comm. Math. Phys. 192 (1998) 463. | Zbl
, ,[15] Evolution of Hele-Shaw interface for small surface tension, Philos. Trans. Roy. Soc. London A 343 (1993) 155. | Zbl
,[16] Basic Linear Partial Differential Equations, Academic Press, 1975. | MR | Zbl
,Cité par Sources :