@article{AIHPC_2007__24_3_471_0, author = {Fura, Justyna and Rybicki, S{\l}awomir}, title = {Periodic solutions of second order hamiltonian systems bifurcating from infinity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {471--490}, publisher = {Elsevier}, volume = {24}, number = {3}, year = {2007}, doi = {10.1016/j.anihpc.2006.03.003}, zbl = {1129.37034}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2006.03.003/} }
TY - JOUR AU - Fura, Justyna AU - Rybicki, Sławomir TI - Periodic solutions of second order hamiltonian systems bifurcating from infinity JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 471 EP - 490 VL - 24 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2006.03.003/ DO - 10.1016/j.anihpc.2006.03.003 LA - en ID - AIHPC_2007__24_3_471_0 ER -
%0 Journal Article %A Fura, Justyna %A Rybicki, Sławomir %T Periodic solutions of second order hamiltonian systems bifurcating from infinity %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 471-490 %V 24 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2006.03.003/ %R 10.1016/j.anihpc.2006.03.003 %G en %F AIHPC_2007__24_3_471_0
Fura, Justyna; Rybicki, Sławomir. Periodic solutions of second order hamiltonian systems bifurcating from infinity. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 3, pp. 471-490. doi : 10.1016/j.anihpc.2006.03.003. https://www.numdam.org/articles/10.1016/j.anihpc.2006.03.003/
[1] Lectures on Lie Groups, W.A. Benjamin, New York, 1969. | MR | Zbl
,[2] Branching points for a class of variational operators, J. Anal. Math. 76 (1998) 321-335. | MR | Zbl
,[3] Die Lösung der Versweigungsgleichungen für Nichtlineare Eigenwert-Probleme, Math. Z. 127 (1972) 105-126. | MR
,[4] A Topological Introduction to Nonlinear Analysis, Birkhäuser Boston, Boston, MA, 2004. | MR | Zbl
,
[5] A new degree for
[6] Transformation Groups, Walter de Gruyter, Berlin, 1987. | MR | Zbl
,[7] Existence and continuation of periodic solutions of autonomous Newtonian systems, J. Differential Equations 218 (1) (2005) 216-252. | MR | Zbl
, , ,[8] Degree for gradient equivariant maps and equivariant Conley index, in: , (Eds.), Topological Nonlinear Analysis, Degree, Singularity and Variations, Progr. Nonlinear Differential Equations Appl., vol. 27, Birkhäuser, 1997, pp. 247-272. | Zbl
,[9] Hopf bifurcations at infinity, Nonlinear Anal. TMA 13 (12) (1989) 1393-1398. | MR | Zbl
,[10] Topological bifurcation, in: , (Eds.), Topological Nonlinear Analysis, Degree, Singularity and Variations, Progr. Nonlinear Differential Equations Appl., vol. 15, Birkhäuser, Basel, 1995, pp. 341-463. | MR | Zbl
,[11] Global Bifurcations in Variational Inequalities, Springer-Verlag, New York, 1997. | MR | Zbl
, ,[12] Bifurcation from infinity and multiple solutions for periodic boundary value problems, Nonlinear Anal. TMA 42 (1) (2000) 27-39. | MR | Zbl
,[13] Periodic trajectories near degenerate equilibria in the Hénon-Heiles and Yang-Mills Hamiltonian systems, J. Dynam. Differential Equations 17 (3) (2005) 475-488. | Zbl
, , ,[14] Periodic solutions of the Liénard equation: bifurcation from infinity and nonuniqueness, Rend. Istit. Mat. Univ. Trieste 19 (1) (1987) 12-31. | MR | Zbl
,[15] La biforcazione nel caso variazionale, Conf. Sem. Mat. Univ. Bari 132 (1977). | MR | Zbl
,[16] Symmetries, topological degree and a theorem of Z.Q. Wang, Rocky Mountain J. Math. 24 (3) (1994) 1087-1115. | MR | Zbl
,[17] Degenerate branching points of autonomous Hamiltonian systems, Nonlinear Anal. TMA 55 (1-2) (2003) 153-166. | Zbl
,[18] Degenerate bifurcation points of periodic solutions of autonomous Hamiltonian systems, J. Differential Equations 202 (2) (2004) 284-305. | MR | Zbl
, ,
[19]
[20] Applications of degree for
[21] Degree for equivariant gradient maps, Milan J. Math. 73 (2005) 103-144. | MR | Zbl
,
[22] Bifurcations of solutions of
[23] Hopf bifurcation from infinity, Rend. Sem. Mat. Univ. Padova 78 (1987) 237-253. | Numdam | MR | Zbl
,[24] Successive bifurcations at infinity for second order O.D.E.'s, Qual. Theory Dynam. Syst. 3 (2) (2002) 1-17. | MR | Zbl
,[25] Some remarks on the Böhme-Berger bifurcation theorem, Math. Z. 125 (1972) 359-364. | Zbl
,- Periodic Solutions of Asymptotically Linear Autonomous Hamiltonian Systems with Resonance, Journal of Dynamics and Differential Equations, Volume 30 (2018) no. 4, p. 1509 | DOI:10.1007/s10884-017-9608-0
- Bifurcations of Nonconstant Solutions of the Ginzburg‐Landau Equation, Abstract and Applied Analysis, Volume 2012 (2012) no. 1 | DOI:10.1155/2012/560975
- Periodic solutions of autonomous Newtonian systems partially asymptotically linear at infinity, Journal of Mathematical Analysis and Applications, Volume 394 (2012) no. 1, p. 276 | DOI:10.1016/j.jmaa.2012.04.057
- Periodic solutions of asymptotically linear autonomous Newtonian systems with resonance, Nonlinear Analysis: Theory, Methods Applications, Volume 75 (2012) no. 10, p. 4033 | DOI:10.1016/j.na.2012.02.020
- Bifurcation and symmetry breaking of solutions of systems of elliptic differential equations, Nonlinear Analysis: Theory, Methods Applications, Volume 75 (2012) no. 11, p. 4278 | DOI:10.1016/j.na.2012.03.016
- Continuation of discrete breathers from infinity in a nonlinear model for DNA breathing, Applicable Analysis, Volume 89 (2010) no. 9, p. 1447 | DOI:10.1080/00036810903437788
- A degenerate case of Andronov-Hopf bifurcation at infinity, Automation and Remote Control, Volume 71 (2010) no. 11, p. 2307 | DOI:10.1134/s0005117910110044
- A short treatise on the equivariant degree theory and its applications, Journal of Fixed Point Theory and Applications, Volume 8 (2010) no. 1, p. 1 | DOI:10.1007/s11784-010-0033-9
- Equivariant bifurcation index, Nonlinear Analysis: Theory, Methods Applications, Volume 73 (2010) no. 9, p. 2779 | DOI:10.1016/j.na.2010.06.001
- Continuation of relative periodic orbits in a class of triatomic Hamiltonian systems, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 26 (2009) no. 4, p. 1237 | DOI:10.1016/j.anihpc.2008.10.002
- Existence and continuation of solutions for a nonlinear Neumann problem, Nonlinear Analysis: Theory, Methods Applications, Volume 69 (2008) no. 10, p. 3423 | DOI:10.1016/j.na.2007.09.034
Cité par 11 documents. Sources : Crossref