@article{AIHPC_2007__24_1_91_0, author = {Kurzke, Matthias}, title = {The gradient flow motion of boundary vortices}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {91--112}, publisher = {Elsevier}, volume = {24}, number = {1}, year = {2007}, doi = {10.1016/j.anihpc.2005.12.002}, mrnumber = {2286560}, zbl = {1114.35022}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2005.12.002/} }
TY - JOUR AU - Kurzke, Matthias TI - The gradient flow motion of boundary vortices JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 91 EP - 112 VL - 24 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2005.12.002/ DO - 10.1016/j.anihpc.2005.12.002 LA - en ID - AIHPC_2007__24_1_91_0 ER -
Kurzke, Matthias. The gradient flow motion of boundary vortices. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 1, pp. 91-112. doi : 10.1016/j.anihpc.2005.12.002. http://www.numdam.org/articles/10.1016/j.anihpc.2005.12.002/
[1] Variational convergence for functionals of Ginzburg-Landau type, Indiana Univ. Math. J. 54 (2005) 1411-1472. | Zbl
, , ,[2] Un résultat de perturbations singulières avec la norme , C. R. Acad. Sci. Paris Sér. I Math. 319 (4) (1994) 333-338. | MR | Zbl
, , ,[3] Phase transition with the line-tension effect, Arch. Rational Mech. Anal. 144 (1) (1998) 1-46. | MR | Zbl
, , ,[4] Topological methods for the Ginzburg-Landau equations, J. Math. Pures Appl. (9) 77 (1) (1998) 1-49. | Zbl
, ,[5] Ginzburg-Landau Vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 13, Birkhäuser Boston Inc., Boston, MA, 1994. | Zbl
, , ,[6] X. Cabré, N. Cónsul, Minimizers for boundary reactions: renormalized energy, location of singularities, and applications, in preparation.
[7] Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math. 58 (12) (2005) 1678-1732. | MR | Zbl
, ,[8] Thin layers in micromagnetism, Math. Models Methods Appl. Sci. 11 (9) (2001) 1529-1546. | MR | Zbl
,[9] A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math. 55 (11) (2002) 1408-1460. | MR | Zbl
, , , ,[10] Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. | MR | Zbl
, ,[11] A. Garroni, S. Müller, A variational model for dislocations in the line-tension limit, Preprint 76, Max Planck Institute for Mathematics in the Sciences, 2004.
[12] Micromagnetics of very thin films, Proc. Roy. Soc. London Ser. A 453 (1997) 213-223.
, ,[13] Dynamics of Ginzburg-Landau vortices, Arch. Rational Mech. Anal. 142 (2) (1998) 99-125. | Zbl
, ,[14] Another thin-film limit of micromagnetics, Arch. Rational Mech. Anal. 178 (2) (2005) 227-245. | MR | Zbl
, ,[15] Effective dynamics for ferromagnetic thin films: a rigorous justification, Proc. Roy. Soc. London Ser. A Math. Phys. Eng. Sci. 461 (2053) (2005) 143-154. | MR
, ,[16] Boundary vortices in thin magnetic films, Calc. Var. Partial Differential Equations 26 (1) (2006) 1-28. | MR
,[17] A nonlocal singular perturbation problem with periodic well potential, ESAIM Control Optim. Calc. Var. 12 (2006) 52-63. | Numdam | MR | Zbl
,[18] Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math. 49 (4) (1996) 323-359. | Zbl
,[19] A remark on the previous paper: “Some dynamical properties of Ginzburg-Landau vortices”, Comm. Pure Appl. Math. 49 (4) (1996) 361-364. | Zbl
,[20] Boundary vortices for thin ferromagnetic films, Arch. Rational Mech. Anal. 174 (2004) 267-300. | MR | Zbl
,[21] Ginzburg-Landau vortices for thin ferromagnetic films, Applied Mathematics Research eXpress 2003 (1) (2003) 1-32. | Zbl
,[22] Moving boundary vortices for a thin-film limit in micromagnetics, Comm. Pure Appl. Math. 58 (2005) 701-721. | MR | Zbl
,[23] Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math. 57 (12) (2004) 1627-1672. | Zbl
, ,[24] A product-estimate for Ginzburg-Landau and corollaries, J. Funct. Anal. 211 (1) (2004) 219-244. | Zbl
, ,[25] Local minimizers for the Ginzburg-Landau energy near critical magnetic field. I, Commun. Contemp. Math. 1 (2) (1999) 213-254. | Zbl
,[26] Local minimizers for the Ginzburg-Landau energy near critical magnetic field. II, Commun. Contemp. Math. 1 (3) (1999) 295-333. | Zbl
,[27] The Peierls-Nabarro and Benjamin-Ono equations, J. Funct. Anal. 145 (1) (1997) 136-150. | Zbl
,Cité par Sources :