@article{AIHPC_2007__24_1_61_0, author = {Andreu, F. and Igbida, N. and Maz\'on, J. M. and Toledo, J.}, title = {${L}^{1}$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {61--89}, publisher = {Elsevier}, volume = {24}, number = {1}, year = {2007}, doi = {10.1016/j.anihpc.2005.09.009}, mrnumber = {2286559}, zbl = {1123.35016}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2005.09.009/} }
TY - JOUR AU - Andreu, F. AU - Igbida, N. AU - Mazón, J. M. AU - Toledo, J. TI - ${L}^{1}$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 61 EP - 89 VL - 24 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2005.09.009/ DO - 10.1016/j.anihpc.2005.09.009 LA - en ID - AIHPC_2007__24_1_61_0 ER -
%0 Journal Article %A Andreu, F. %A Igbida, N. %A Mazón, J. M. %A Toledo, J. %T ${L}^{1}$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 61-89 %V 24 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2005.09.009/ %R 10.1016/j.anihpc.2005.09.009 %G en %F AIHPC_2007__24_1_61_0
Andreu, F.; Igbida, N.; Mazón, J. M.; Toledo, J. ${L}^{1}$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 1, pp. 61-89. doi : 10.1016/j.anihpc.2005.09.009. https://www.numdam.org/articles/10.1016/j.anihpc.2005.09.009/
[1] K. Ammar, F. Andreu, J. Toledo, Quasi-linear elliptic problems in
[2] F. Andreu, N. Igbida, J.M. Mazón, J. Toledo, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions, in preparation. | Zbl
[3] Quasi-linear elliptic and parabolic equations in
[4] Ph. Bénilan, Equations d'évolution dans un espace de Banach quelconque et applications, Thesis, Univ. Orsay, 1972.
[5] An
[6] A semilinear equation in
[7] Completely accretive operators, in: Semigroup Theory and Evolution Equations, Delft, 1989, Lecture Notes in Pure and Appl. Math., vol. 135, Dekker, New York, 1991, pp. 41-75. | MR | Zbl
, ,[8] Ph. Bénilan, M.G. Crandall, A. Pazy, Evolution Equations governed by accretive operators, in press.
[9] Some
[10] Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations 17 (1992) 641-655. | MR | Zbl
, ,[11] Problémes unilatéraux, J. Math. Pures Appl. 51 (1972) 1-168. | MR | Zbl
,[12] Opérateur Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, Oxford Univ. Press, Oxford, 1984.
,[13] An introduction to evolution governed by accretive operators, in: , (Eds.), Dynamical System, An International Symposium, vol. 1, Academic Press, New York, 1976, pp. 131-165, Dekker, New York, 1991. | MR | Zbl
,[14] Free and Moving Boundary Problems, North-Holland, Amsterdam, 1977.
,[15] The ill-posed Hele-Shaw model and the Stefan problem for supercooler water, Trans. Amer. Math. Soc. 282 (1984) 183-204. | Zbl
, ,[16] Inequalities in Mechanics and Physiscs, Springer-Verlag, 1976. | MR | Zbl
, ,[17] A variational inequality approach to the Hele-Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburg Sect. A 88 (1981) 93-107. | Zbl
, ,[18] A degenerate diffusion problem with dynamical boundary conditions, Math. Ann. 323 (2) (2002) 377-396. | MR | Zbl
, ,[19] N. Igbida, The Hele-Shaw problem with dynamical boundary conditions, Preprint.
[20] N. Igbida, Nonlinear heat equation with fast/logarithmic diffusion, Preprint.
[21] An Introduction to Variational Inequalities and their Applications, Pure Appl. Math., vol. 88, Academic Press Inc., New York, 1980. | MR | Zbl
, ,[22] Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988) 1203-1219. | MR | Zbl
,[23] Quelques méthodes de résolution de problémes aux limites non linéaires, Dunod-Gauthier-Vilars, Paris, 1968. | Zbl
,- On a nonlinear Robin problem with an absorption term on the boundary and L 1 data, Advances in Nonlinear Analysis, Volume 13 (2024) no. 1 | DOI:10.1515/anona-2023-0118
- Existence and Uniqueness of Renormalized Solution to Nonlinear Anisotropic Elliptic Problems with Variable Exponent and L 1 -Data, International Journal of Differential Equations, Volume 2023 (2023), p. 1 | DOI:10.1155/2023/9454714
- Nonlocal doubly nonlinear diffusion problems with nonlinear boundary conditions, Journal of Evolution Equations, Volume 23 (2023) no. 2 | DOI:10.1007/s00028-022-00854-y
- Doubly nonlinear equations for the 1-Laplacian, Journal of Evolution Equations, Volume 23 (2023) no. 4 | DOI:10.1007/s00028-023-00917-8
- Structural Stability of p(x)-Laplace Problems with Robin-Type Boundary Condition, Partial Differential Equations and Applications, Volume 420 (2023), p. 37 | DOI:10.1007/978-3-031-27661-3_2
- Doubly Nonlinear Nonlocal Stationary Problems of Leray-Lions Type with Nonlinear Boundary Conditions, Variational and Diffusion Problems in Random Walk Spaces, Volume 103 (2023), p. 235 | DOI:10.1007/978-3-031-33584-6_6
- Existence of solution for nonlinear elliptic inclusion problems with degenerate coercivity and
-data, Journal of Elliptic and Parabolic Equations, Volume 8 (2022) no. 1, p. 127 | DOI:10.1007/s41808-022-00145-0 - Existence and stability of solutions to nonlinear parabolic problems with perturbed gradient and measure data, Mathematical Modeling and Computing, Volume 9 (2022) no. 4, p. 977 | DOI:10.23939/mmc2022.04.977
- Renormalized solutions for a p(·)-Laplacian equation with Neumann nonhomogeneous boundary condition involving diffuse measure data and variable exponent, Moroccan Journal of Pure and Applied Analysis, Volume 8 (2022) no. 2, p. 163 | DOI:10.2478/mjpaa-2022-0012
-
-Laplacian problem with nonlinear singular terms, Rendiconti del Circolo Matematico di Palermo Series 2, Volume 71 (2022) no. 1, p. 105 | DOI:10.1007/s12215-021-00604-y - Rothe time-discretization method for a nonlinear parabolic p(u) -Laplacian problem with Fourier-type boundary condition and
-data, Ricerche di Matematica, Volume 71 (2022) no. 2, p. 609 | DOI:10.1007/s11587-020-00544-2 - Renormalized solutions for some nonlinear nonhomogeneous elliptic problems with Neumann boundary conditions and right hand side measure, Boletim da Sociedade Paranaense de Matemática, Volume 39 (2021) no. 6, p. 81 | DOI:10.5269/bspm.41896
- On
-Laplacian problem with singular nonlinearity having variable exponent, Journal of Elliptic and Parabolic Equations, Volume 7 (2021) no. 2, p. 761 | DOI:10.1007/s41808-021-00112-1 - Renormalized solutions for p(x)-Laplacian equation with Neumann nonhomogeneous boundary condition, Advances in Operator Theory, Volume 5 (2020) no. 4, p. 1480 | DOI:10.1007/s43036-020-00055-9
- Evolution problems of Leray–Lions type with nonhomogeneous Neumann boundary conditions in metric random walk spaces, Nonlinear Analysis, Volume 197 (2020), p. 111813 | DOI:10.1016/j.na.2020.111813
- Elliptic problem involving non-local boundary conditions, Nonlinear Analysis, Volume 181 (2019), p. 87 | DOI:10.1016/j.na.2018.08.019
- Nonhomogeneous Dirichlet problems for the p-Laplacian, Calculus of Variations and Partial Differential Equations, Volume 56 (2017) no. 2 | DOI:10.1007/s00526-017-1113-0
- W 1,1(Ω) Solutions of Nonlinear Problems with Nonhomogeneous Neumann Boundary Conditions, Milan Journal of Mathematics, Volume 83 (2015) no. 2, p. 279 | DOI:10.1007/s00032-015-0235-0
- Existence of solutions and regularizing effect for some elliptic nonlinear problems with nonhomogeneous Neumann boundary conditions, Revista Matemática Complutense, Volume 28 (2015) no. 2, p. 263 | DOI:10.1007/s13163-014-0162-6
- Well-posedness of general boundary-value problems for scalar conservation laws, Transactions of the American Mathematical Society, Volume 367 (2015) no. 6, p. 3763 | DOI:10.1090/s0002-9947-2015-05988-1
- Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and
-data, Discrete and Continuous Dynamical Systems, Volume 34 (2013) no. 2, p. 761 | DOI:10.3934/dcds.2014.34.761 - ENTROPY SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS NEUMANN PROBLEMS INVOLVING THE GENERALIZED P(X)-LAPLACE OPERATOR, Journal of Applied Analysis Computation, Volume 3 (2013) no. 2, p. 105 | DOI:10.11948/2013009
- Abstract reaction-diffusion systems with
-completely accretive diffusion operators and measurable reaction rates, Communications on Pure and Applied Analysis, Volume 11 (2012) no. 6, p. 2239 | DOI:10.3934/cpaa.2012.11.2239 - Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, Journal of Differential Equations, Volume 253 (2012) no. 2, p. 635 | DOI:10.1016/j.jde.2012.03.025
- Partial differential equations governed by accretive operators, SeMA Journal, Volume 58 (2012) no. 1, p. 25 | DOI:10.1007/bf03322604
- Weak and entropy solutions to nonlinear Neumann boundary-value problems with variable exponents, Complex Variables and Elliptic Equations, Volume 56 (2011) no. 7-9, p. 829 | DOI:10.1080/17476933.2010.504840
- Ecuaciones en derivadas parciales gobernadas por operadores acretivos, SeMA Journal, Volume 52 (2010) no. 1, p. 11 | DOI:10.1007/bf03322573
- Renormalized solutions for degenerate elliptic–parabolic problems with nonlinear dynamical boundary conditions andL1-data, Journal of Differential Equations, Volume 244 (2008) no. 11, p. 2764 | DOI:10.1016/j.jde.2008.02.022
- OBSTACLE PROBLEMS FOR DEGENERATE ELLIPTIC EQUATIONS WITH NONHOMOGENEOUS NONLINEAR BOUNDARY CONDITIONS, Mathematical Models and Methods in Applied Sciences, Volume 18 (2008) no. 11, p. 1869 | DOI:10.1142/s0218202508003224
Cité par 29 documents. Sources : Crossref