L1 existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions
Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 1, pp. 61-89.
@article{AIHPC_2007__24_1_61_0,
     author = {Andreu, F. and Igbida, N. and Maz\'on, J. M. and Toledo, J.},
     title = {${L}^{1}$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {61--89},
     publisher = {Elsevier},
     volume = {24},
     number = {1},
     year = {2007},
     doi = {10.1016/j.anihpc.2005.09.009},
     mrnumber = {2286559},
     zbl = {1123.35016},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2005.09.009/}
}
TY  - JOUR
AU  - Andreu, F.
AU  - Igbida, N.
AU  - Mazón, J. M.
AU  - Toledo, J.
TI  - ${L}^{1}$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2007
SP  - 61
EP  - 89
VL  - 24
IS  - 1
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2005.09.009/
DO  - 10.1016/j.anihpc.2005.09.009
LA  - en
ID  - AIHPC_2007__24_1_61_0
ER  - 
%0 Journal Article
%A Andreu, F.
%A Igbida, N.
%A Mazón, J. M.
%A Toledo, J.
%T ${L}^{1}$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2007
%P 61-89
%V 24
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2005.09.009/
%R 10.1016/j.anihpc.2005.09.009
%G en
%F AIHPC_2007__24_1_61_0
Andreu, F.; Igbida, N.; Mazón, J. M.; Toledo, J. ${L}^{1}$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 1, pp. 61-89. doi : 10.1016/j.anihpc.2005.09.009. https://www.numdam.org/articles/10.1016/j.anihpc.2005.09.009/

[1] K. Ammar, F. Andreu, J. Toledo, Quasi-linear elliptic problems in L1 with non homogeneous boundary conditions, Rend. Mat. Univ. Roma, in press.

[2] F. Andreu, N. Igbida, J.M. Mazón, J. Toledo, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions, in preparation. | Zbl

[3] Andreu F., Mazón J.M., Segura De León S., Toledo J., Quasi-linear elliptic and parabolic equations in L1 with nonlinear boundary conditions, Adv. Math. Sci. Appl. 7 (1) (1997) 183-213. | MR | Zbl

[4] Ph. Bénilan, Equations d'évolution dans un espace de Banach quelconque et applications, Thesis, Univ. Orsay, 1972.

[5] Bénilan Ph., Boccardo L., Gallouët Th., Gariepy R., Pierre M., Vázquez J.L., An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (2) (1995) 241-273. | Numdam | MR | Zbl

[6] Benilan Ph., Brezis H., Crandall M.G., A semilinear equation in L1RN, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (4) (1975) 523-555. | Numdam | MR | Zbl

[7] Bénilan Ph., Crandall M.G., Completely accretive operators, in: Semigroup Theory and Evolution Equations, Delft, 1989, Lecture Notes in Pure and Appl. Math., vol. 135, Dekker, New York, 1991, pp. 41-75. | MR | Zbl

[8] Ph. Bénilan, M.G. Crandall, A. Pazy, Evolution Equations governed by accretive operators, in press.

[9] Bénilan Ph., Crandall M.G., Sacks P., Some L1 existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions, Appl. Math. Optim. 17 (3) (1988) 203-224. | MR | Zbl

[10] Boccardo L., Gallouët Th., Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations 17 (1992) 641-655. | MR | Zbl

[11] Brezis H., Problémes unilatéraux, J. Math. Pures Appl. 51 (1972) 1-168. | MR | Zbl

[12] Brezis H., Opérateur Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, Oxford Univ. Press, Oxford, 1984.

[13] Crandall M.G., An introduction to evolution governed by accretive operators, in: Cesari L., (Eds.), Dynamical System, An International Symposium, vol. 1, Academic Press, New York, 1976, pp. 131-165, Dekker, New York, 1991. | MR | Zbl

[14] Crank J., Free and Moving Boundary Problems, North-Holland, Amsterdam, 1977.

[15] Dibenedetto E., Friedman A., The ill-posed Hele-Shaw model and the Stefan problem for supercooler water, Trans. Amer. Math. Soc. 282 (1984) 183-204. | Zbl

[16] Duvaux G., Lions J.L., Inequalities in Mechanics and Physiscs, Springer-Verlag, 1976. | MR | Zbl

[17] Elliot C.M., Janosky V., A variational inequality approach to the Hele-Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburg Sect. A 88 (1981) 93-107. | Zbl

[18] Igbida N., Kirane M., A degenerate diffusion problem with dynamical boundary conditions, Math. Ann. 323 (2) (2002) 377-396. | MR | Zbl

[19] N. Igbida, The Hele-Shaw problem with dynamical boundary conditions, Preprint.

[20] N. Igbida, Nonlinear heat equation with fast/logarithmic diffusion, Preprint.

[21] Kinderlehrer D., Stampacchia G., An Introduction to Variational Inequalities and their Applications, Pure Appl. Math., vol. 88, Academic Press Inc., New York, 1980. | MR | Zbl

[22] Lieberman G.M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988) 1203-1219. | MR | Zbl

[23] Lions J.L., Quelques méthodes de résolution de problémes aux limites non linéaires, Dunod-Gauthier-Vilars, Paris, 1968. | Zbl

  • Pietra, Francesco Della; Oliva, Francescantonio; León, Sergio Segura de On a nonlinear Robin problem with an absorption term on the boundary and L 1 data, Advances in Nonlinear Analysis, Volume 13 (2024) no. 1 | DOI:10.1515/anona-2023-0118
  • Konaté, Ibrahime; Ouédraogo, Arouna; Ganji, Davood D. Existence and Uniqueness of Renormalized Solution to Nonlinear Anisotropic Elliptic Problems with Variable Exponent and L 1 -Data, International Journal of Differential Equations, Volume 2023 (2023), p. 1 | DOI:10.1155/2023/9454714
  • Solera, Marcos; Toledo, Julián Nonlocal doubly nonlinear diffusion problems with nonlinear boundary conditions, Journal of Evolution Equations, Volume 23 (2023) no. 2 | DOI:10.1007/s00028-022-00854-y
  • Mazón, J. M.; Molino, A.; Toledo, J. Doubly nonlinear equations for the 1-Laplacian, Journal of Evolution Equations, Volume 23 (2023) no. 4 | DOI:10.1007/s00028-023-00917-8
  • Kansie, Kpè; Ouaro, Stanislas Structural Stability of p(x)-Laplace Problems with Robin-Type Boundary Condition, Partial Differential Equations and Applications, Volume 420 (2023), p. 37 | DOI:10.1007/978-3-031-27661-3_2
  • Mazón, José M.; Solera-Diana, Marcos; Toledo-Melero, J. Julián Doubly Nonlinear Nonlocal Stationary Problems of Leray-Lions Type with Nonlinear Boundary Conditions, Variational and Diffusion Problems in Random Walk Spaces, Volume 103 (2023), p. 235 | DOI:10.1007/978-3-031-33584-6_6
  • Akdim, Youssef; Belayachi, Mohammed; Ouboufettal, Morad Existence of solution for nonlinear elliptic inclusion problems with degenerate coercivity and L1-data, Journal of Elliptic and Parabolic Equations, Volume 8 (2022) no. 1, p. 127 | DOI:10.1007/s41808-022-00145-0
  • Benboubker, M. B.; Traore, U. Existence and stability of solutions to nonlinear parabolic problems with perturbed gradient and measure data, Mathematical Modeling and Computing, Volume 9 (2022) no. 4, p. 977 | DOI:10.23939/mmc2022.04.977
  • Benboubker, M. B.; Nassouri, E.; Ouaro, S.; Traoré, U. Renormalized solutions for a p(·)-Laplacian equation with Neumann nonhomogeneous boundary condition involving diffuse measure data and variable exponent, Moroccan Journal of Pure and Applied Analysis, Volume 8 (2022) no. 2, p. 163 | DOI:10.2478/mjpaa-2022-0012
  • Elharrar, N.; Igbida, J.; Talibi, H. p()-Laplacian problem with nonlinear singular terms, Rendiconti del Circolo Matematico di Palermo Series 2, Volume 71 (2022) no. 1, p. 105 | DOI:10.1007/s12215-021-00604-y
  • Sabri, Abdelali; Jamea, Ahmed Rothe time-discretization method for a nonlinear parabolic p(u) -Laplacian problem with Fourier-type boundary condition and L1-data, Ricerche di Matematica, Volume 71 (2022) no. 2, p. 609 | DOI:10.1007/s11587-020-00544-2
  • Azroul, Elhoussine; Benboubker, Mohamed Badr; Bouzyani, Rachid; Chrayteh, Houssam Renormalized solutions for some nonlinear nonhomogeneous elliptic problems with Neumann boundary conditions and right hand side measure, Boletim da Sociedade Paranaense de Matemática, Volume 39 (2021) no. 6, p. 81 | DOI:10.5269/bspm.41896
  • Elharrar, N.; Igbida, J.; Bouhlal, A. On p()-Laplacian problem with singular nonlinearity having variable exponent, Journal of Elliptic and Parabolic Equations, Volume 7 (2021) no. 2, p. 761 | DOI:10.1007/s41808-021-00112-1
  • Benboubker, M. B.; Nassouri, E.; Ouaro, S.; Traoré, U. Renormalized solutions for p(x)-Laplacian equation with Neumann nonhomogeneous boundary condition, Advances in Operator Theory, Volume 5 (2020) no. 4, p. 1480 | DOI:10.1007/s43036-020-00055-9
  • Mazón, José M.; Solera, Marcos; Toledo, Julián Evolution problems of Leray–Lions type with nonhomogeneous Neumann boundary conditions in metric random walk spaces, Nonlinear Analysis, Volume 197 (2020), p. 111813 | DOI:10.1016/j.na.2020.111813
  • Igbida, Noureddine; Safimba, Soma Elliptic problem involving non-local boundary conditions, Nonlinear Analysis, Volume 181 (2019), p. 87 | DOI:10.1016/j.na.2018.08.019
  • De Figueiredo, Djairo G.; Gossez, Jean-Pierre; Ubilla, Pedro Nonhomogeneous Dirichlet problems for the p-Laplacian, Calculus of Variations and Partial Differential Equations, Volume 56 (2017) no. 2 | DOI:10.1007/s00526-017-1113-0
  • Boccardo, Lucio; Moreno-Mérida, Lourdes W 1,1(Ω) Solutions of Nonlinear Problems with Nonhomogeneous Neumann Boundary Conditions, Milan Journal of Mathematics, Volume 83 (2015) no. 2, p. 279 | DOI:10.1007/s00032-015-0235-0
  • Boccardo, L.; Mazón, J. M. Existence of solutions and regularizing effect for some elliptic nonlinear problems with nonhomogeneous Neumann boundary conditions, Revista Matemática Complutense, Volume 28 (2015) no. 2, p. 263 | DOI:10.1007/s13163-014-0162-6
  • Andreianov, Boris; Sbihi, Karima Well-posedness of general boundary-value problems for scalar conservation laws, Transactions of the American Mathematical Society, Volume 367 (2015) no. 6, p. 3763 | DOI:10.1090/s0002-9947-2015-05988-1
  • Warma, Mahamadi; Sacks, Paul Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and L1-data, Discrete and Continuous Dynamical Systems, Volume 34 (2013) no. 2, p. 761 | DOI:10.3934/dcds.2014.34.761
  • E. Azroul; M. B. Benboubker; S. Ouaro ENTROPY SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS NEUMANN PROBLEMS INVOLVING THE GENERALIZED P(X)-LAPLACE OPERATOR, Journal of Applied Analysis Computation, Volume 3 (2013) no. 2, p. 105 | DOI:10.11948/2013009
  • Bothe, Dieter; Wittbold, Petra Abstract reaction-diffusion systems with m-completely accretive diffusion operators and measurable reaction rates, Communications on Pure and Applied Analysis, Volume 11 (2012) no. 6, p. 2239 | DOI:10.3934/cpaa.2012.11.2239
  • Gwiazda, Piotr; Wittbold, Petra; Wróblewska, Aneta; Zimmermann, Aleksandra Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, Journal of Differential Equations, Volume 253 (2012) no. 2, p. 635 | DOI:10.1016/j.jde.2012.03.025
  • Mazón Ruiz, José M. Partial differential equations governed by accretive operators, SeMA Journal, Volume 58 (2012) no. 1, p. 25 | DOI:10.1007/bf03322604
  • Ouaro, Stanislas; Soma, Safimba Weak and entropy solutions to nonlinear Neumann boundary-value problems with variable exponents, Complex Variables and Elliptic Equations, Volume 56 (2011) no. 7-9, p. 829 | DOI:10.1080/17476933.2010.504840
  • Mazón Ruiz, José M. Ecuaciones en derivadas parciales gobernadas por operadores acretivos, SeMA Journal, Volume 52 (2010) no. 1, p. 11 | DOI:10.1007/bf03322573
  • Andreu, F.; Igbida, N.; Mazón, J.M.; Toledo, J. Renormalized solutions for degenerate elliptic–parabolic problems with nonlinear dynamical boundary conditions andL1-data, Journal of Differential Equations, Volume 244 (2008) no. 11, p. 2764 | DOI:10.1016/j.jde.2008.02.022
  • ANDREU, FUENSANTA; IGBIDA, NOUREDDINE; MAZÓN, JOSÉ M.; TOLEDO, JULIÁN OBSTACLE PROBLEMS FOR DEGENERATE ELLIPTIC EQUATIONS WITH NONHOMOGENEOUS NONLINEAR BOUNDARY CONDITIONS, Mathematical Models and Methods in Applied Sciences, Volume 18 (2008) no. 11, p. 1869 | DOI:10.1142/s0218202508003224

Cité par 29 documents. Sources : Crossref