An optimal symbolic calculus on Besov algebras
Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 6, pp. 949-956.
DOI : 10.1016/j.anihpc.2006.06.001
Bourdaud, Gérard 1 ; Moussai, Madani  ; Sickel, Winfried 

1 Université Paris VII, UFR de Mathématiques, 2 place Jussieu, 75251 Paris Cedex 05 (France)
@article{AIHPC_2006__23_6_949_0,
     author = {Bourdaud, G\'erard and Moussai, Madani and Sickel, Winfried},
     title = {An optimal symbolic calculus on {Besov} algebras},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {949--956},
     publisher = {Elsevier},
     volume = {23},
     number = {6},
     year = {2006},
     doi = {10.1016/j.anihpc.2006.06.001},
     mrnumber = {2271703},
     zbl = {05138728},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.001/}
}
TY  - JOUR
AU  - Bourdaud, Gérard
AU  - Moussai, Madani
AU  - Sickel, Winfried
TI  - An optimal symbolic calculus on Besov algebras
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2006
SP  - 949
EP  - 956
VL  - 23
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.001/
DO  - 10.1016/j.anihpc.2006.06.001
LA  - en
ID  - AIHPC_2006__23_6_949_0
ER  - 
%0 Journal Article
%A Bourdaud, Gérard
%A Moussai, Madani
%A Sickel, Winfried
%T An optimal symbolic calculus on Besov algebras
%J Annales de l'I.H.P. Analyse non linéaire
%D 2006
%P 949-956
%V 23
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.001/
%R 10.1016/j.anihpc.2006.06.001
%G en
%F AIHPC_2006__23_6_949_0
Bourdaud, Gérard; Moussai, Madani; Sickel, Winfried. An optimal symbolic calculus on Besov algebras. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 6, pp. 949-956. doi : 10.1016/j.anihpc.2006.06.001. http://www.numdam.org/articles/10.1016/j.anihpc.2006.06.001/

[1] Bergh J., Löfström J., Interpolation Spaces, Springer, Berlin, 1976. | Zbl

[2] Bourdaud G., Le calcul fonctionnel dans les espaces de Sobolev, Invent. Math. 104 (1991) 435-446. | MR | Zbl

[3] Bourdaud G., Fonctions qui opèrent sur les espaces de Besov et de Triebel, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993) 413-422. | Numdam | MR | Zbl

[4] Bourdaud G., Une propriété de composition dans l’espace H s , C. R. Acad. Sci. Paris, Ser. I 340 (2005) 221-224. | MR | Zbl

[5] Bourdaud G., Une propriété de composition dans l’espace H s (II), C. R. Acad. Sci. Paris, Ser. I 342 (2006) 243-246. | MR | Zbl

[6] Bourdaud G., Lanza De Cristoforis M., Functional calculus in Hölder-Zygmund spaces, Trans. Amer. Math. Soc. 354 (2002) 4109-4129. | MR | Zbl

[7] G. Bourdaud, M. Lanza de Cristoforis, W. Sickel, Superposition operators and functions of bounded p-variation, Rev. Mat. Iberoamer., in press. Prépublication 362 (Fév. 2004), Institut de Mathématiques de Jussieu, Unité Mixte de Recherche 7586, Université Paris VI et Paris VII/CNRS, http://www.institut.math.jussieu.fr. | MR | Zbl

[8] Bourdaud G., Lanza De Cristoforis M., Sickel W., Superposition operators and functions of bounded p-variation. II, Nonlinear Anal. Ser. A 62 (2005) 483-518. | MR | Zbl

[9] G. Bourdaud, M. Moussai, W. Sickel, Towards sharp superposition theorems in Besov and Lizorkin-Triebel spaces, submitted for publication.

[10] Bourgain J., Brezis H., Mironescu P., Lifting in Sobolev spaces, J. Anal. Math. 80 (2000) 37-86. | MR | Zbl

[11] Katznelson Y., An Introduction to Harmonic Analysis, Dover, New York, 1976. | MR | Zbl

[12] Peetre J., Interpolation of Lipschitz operators and metric spaces, Mathematica (Cluj) 12 (1970) 325-334. | MR | Zbl

[13] Peetre J., New Thoughts on Besov Spaces, Duke Univ. Math. Ser., vol. I, Duke Univ. Press, Durham, NC, 1976. | MR | Zbl

[14] Runst T., Sickel W., Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter, Berlin, 1996. | MR | Zbl

[15] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. | MR | Zbl

[16] Triebel H., Theory of Function Spaces, Birkhäuser, Basel, 1983. | MR | Zbl

[17] Triebel H., Theory of Function Spaces II, Birkhäuser, Basel, 1992. | MR | Zbl

[18] Wiener N., The quadratic variation of a function and its Fourier coefficients, J. Math. Phys. 3 (1924) 72-94. | JFM

Cité par Sources :