@article{AIHPC_2006__23_5_641_0, author = {Horita, Vanderlei and Tahzibi, Ali}, title = {Partial hyperbolicity for symplectic diffeomorphisms}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {641--661}, publisher = {Elsevier}, volume = {23}, number = {5}, year = {2006}, doi = {10.1016/j.anihpc.2005.06.002}, mrnumber = {2259610}, zbl = {05072655}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2005.06.002/} }
TY - JOUR AU - Horita, Vanderlei AU - Tahzibi, Ali TI - Partial hyperbolicity for symplectic diffeomorphisms JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 641 EP - 661 VL - 23 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2005.06.002/ DO - 10.1016/j.anihpc.2005.06.002 LA - en ID - AIHPC_2006__23_5_641_0 ER -
%0 Journal Article %A Horita, Vanderlei %A Tahzibi, Ali %T Partial hyperbolicity for symplectic diffeomorphisms %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 641-661 %V 23 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2005.06.002/ %R 10.1016/j.anihpc.2005.06.002 %G en %F AIHPC_2006__23_5_641_0
Horita, Vanderlei; Tahzibi, Ali. Partial hyperbolicity for symplectic diffeomorphisms. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 5, pp. 641-661. doi : 10.1016/j.anihpc.2005.06.002. https://www.numdam.org/articles/10.1016/j.anihpc.2005.06.002/
[1] A. Arbieto, C. Matheus, A pasting lemma I: the case of vector fields, Preprint, IMPA, 2003.
[2] The generic symplectic
[3] J. Bochi, M. Viana, Lyapunov exponents: How frequently are dynamical systems hyperbolic?, Preprint IMPA, 2003. | MR
[4] Nonhyperbolic transitive diffeomorphisms, Ann. of Math. 143 (1996) 357-396. | MR | Zbl
, ,
[5] A
[6] SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000) 157-193. | MR | Zbl
, ,[7] Recent results about stable ergodicity, Proc. Sympos. Amer. Math. Soc. 69 (2001) 327-366. | MR | Zbl
, , , ,[8] On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1) (1990) 1-26. | Numdam | MR | Zbl
, ,[9] Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999) 1-43. | MR | Zbl
, , ,[10] Contributions to the stability conjecture, Topology 17 (1978) 383-396. | MR | Zbl
,[11] An ergodic closing lemma, Ann. of Math. 116 (1982) 503-540. | MR | Zbl
,[12] Oseledec's theorem from the generic viewpoint, in: Proceedings of the International Congress of Mathematicians, vols. 1, 2, Warsaw, 1983, PWN, Warsaw, 1984, pp. 1269-1276. | MR | Zbl
,[13] Quasi-elliptic periodic points in conservative dynamical systems, Amer. J. Math. 99 (5) (1976) 1061-1087. | MR | Zbl
,
[14] Topologically transitive diffeomorphisms on
[15] Stably ergodic systems which are not partially hyperbolic, Israel J. Math. 24 (204) (2004) 315-342. | MR | Zbl
,[16] Flots robustament transitif sur des variété compactes, C. R. Math. Acad. Sci. Paris 337 (12) (2003) 791-796. | MR | Zbl
,[17] Homoclinic points in symplectic and volume-preserving diffeomorphisms, Comm. Math. Phys. 177 (2) (1996) 435-449. | MR | Zbl
,[18] A note on smoothing symplectic and volume preserving diffeomorphisms, in: Lecture Notes in Math., vol. 597, Springer-Verlag, 1977, pp. 828-854. | MR | Zbl
,- Billiards in generic convex bodies have positive topological entropy, Advances in Mathematics, Volume 442 (2024), p. 109592 | DOI:10.1016/j.aim.2024.109592
- Volume-Preserving Diffeomorphisms with the
-Shadowing Properties, Mediterranean Journal of Mathematics, Volume 18 (2021) no. 2 | DOI:10.1007/s00009-020-01691-4 - A link between topological entropy and Lyapunov exponents, Ergodic Theory and Dynamical Systems, Volume 39 (2019) no. 3, p. 620 | DOI:10.1017/etds.2017.39
- Symplectic diffeomorphisms with limit shadowing, Asian-European Journal of Mathematics, Volume 10 (2017) no. 02, p. 1750068 | DOI:10.1142/s1793557117500681
- C1-Genericity of symplectic diffeomorphisms and lower bounds for topological entropy, Dynamical Systems, Volume 32 (2017) no. 4, p. 461 | DOI:10.1080/14689367.2017.1278744
- Local perturbations of conservativeC1diffeomorphisms, Nonlinearity, Volume 30 (2017) no. 9, p. 3613 | DOI:10.1088/1361-6544/aa803f
- Measure expansive symplectic diffeomorphisms and Hamiltonian systems, International Journal of Mathematics, Volume 27 (2016) no. 09, p. 1650077 | DOI:10.1142/s0129167x16500774
- Continuum-wise expansive symplectic diffeomorphisms, Chaos, Solitons Fractals, Volume 70 (2015), p. 95 | DOI:10.1016/j.chaos.2014.11.007
- A Franks' lemma for convex planar billiards, Dynamical Systems, Volume 30 (2015) no. 3, p. 333 | DOI:10.1080/14689367.2015.1046815
- STABLE WEAK SHADOWABLE SYMPLECTOMORPHISMS ARE PARTIALLY HYPERBOLIC, Communications of the Korean Mathematical Society, Volume 29 (2014) no. 2, p. 285 | DOI:10.4134/ckms.2014.29.2.285
- Realization of tangent perturbations in discrete and continuous time conservative systems, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 12, p. 5359 | DOI:10.3934/dcds.2014.34.5359
- A new proof of Franks' lemma for geodesic flows, Discrete and Continuous Dynamical Systems, Volume 34 (2014) no. 11, p. 4875 | DOI:10.3934/dcds.2014.34.4875
- C1-STABLY SHADOWABLE CONSERVATIVE DIFFEOMORPHISMS ARE ANOSOV, Bulletin of the Korean Mathematical Society, Volume 50 (2013) no. 5, p. 1495 | DOI:10.4134/bkms.2013.50.5.1495
- Hyperbolicity in the volume-preserving scenario, Ergodic Theory and Dynamical Systems, Volume 33 (2013) no. 6, p. 1644 | DOI:10.1017/etds.2012.111
- Symplectic diffeomorphisms with inverse shadowing, Journal of Inequalities and Applications, Volume 2013 (2013) no. 1 | DOI:10.1186/1029-242x-2013-174
- Bibliography, Lozi Mappings (2013), p. 263 | DOI:10.1201/b15363-7
- Shades of hyperbolicity for Hamiltonians, Nonlinearity, Volume 26 (2013) no. 10, p. 2851 | DOI:10.1088/0951-7715/26/10/2851
- A remark on the topological stability of symplectomorphisms, Applied Mathematics Letters, Volume 25 (2012) no. 2, p. 163 | DOI:10.1016/j.aml.2011.08.007
- SYMPLECTIC DIFFEOMORPHISMS WITH ORBITAL SHADOWING, Journal of the Chungcheong Mathematical Society, Volume 25 (2012) no. 4, p. 739 | DOI:10.14403/jcms.2012.25.4.739
- Generic Hamiltonian Dynamical Systems: An Overview, Dynamics, Games and Science I, Volume 1 (2011), p. 123 | DOI:10.1007/978-3-642-11456-4_8
- Nonuniform hyperbolicity for C 1-generic diffeomorphisms, Israel Journal of Mathematics, Volume 183 (2011) no. 1, p. 1 | DOI:10.1007/s11856-011-0041-5
- C1-generic symplectic diffeomorphisms: partial hyperbolicity and zero centre Lyapunov exponents, Journal of the Institute of Mathematics of Jussieu, Volume 9 (2010) no. 1, p. 49 | DOI:10.1017/s1474748009000061
- Abundance of elliptic dynamics on conservative three-flows, Dynamical Systems, Volume 23 (2008) no. 4, p. 409 | DOI:10.1080/14689360802162872
- On C1-robust transitivity of volume-preserving flows, Journal of Differential Equations, Volume 245 (2008) no. 11, p. 3127 | DOI:10.1016/j.jde.2008.02.045
- Dominated splitting and zero volume for incompressible three flows, Nonlinearity, Volume 21 (2008) no. 7, p. 1637 | DOI:10.1088/0951-7715/21/7/014
Cité par 25 documents. Sources : Crossref