Partial hyperbolicity for symplectic diffeomorphisms
Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 5, pp. 641-661.
@article{AIHPC_2006__23_5_641_0,
     author = {Horita, Vanderlei and Tahzibi, Ali},
     title = {Partial hyperbolicity for symplectic diffeomorphisms},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {641--661},
     publisher = {Elsevier},
     volume = {23},
     number = {5},
     year = {2006},
     doi = {10.1016/j.anihpc.2005.06.002},
     mrnumber = {2259610},
     zbl = {05072655},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2005.06.002/}
}
TY  - JOUR
AU  - Horita, Vanderlei
AU  - Tahzibi, Ali
TI  - Partial hyperbolicity for symplectic diffeomorphisms
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2006
SP  - 641
EP  - 661
VL  - 23
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2005.06.002/
DO  - 10.1016/j.anihpc.2005.06.002
LA  - en
ID  - AIHPC_2006__23_5_641_0
ER  - 
%0 Journal Article
%A Horita, Vanderlei
%A Tahzibi, Ali
%T Partial hyperbolicity for symplectic diffeomorphisms
%J Annales de l'I.H.P. Analyse non linéaire
%D 2006
%P 641-661
%V 23
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2005.06.002/
%R 10.1016/j.anihpc.2005.06.002
%G en
%F AIHPC_2006__23_5_641_0
Horita, Vanderlei; Tahzibi, Ali. Partial hyperbolicity for symplectic diffeomorphisms. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 5, pp. 641-661. doi : 10.1016/j.anihpc.2005.06.002. https://www.numdam.org/articles/10.1016/j.anihpc.2005.06.002/

[1] A. Arbieto, C. Matheus, A pasting lemma I: the case of vector fields, Preprint, IMPA, 2003.

[2] Arnaud M.-C., The generic symplectic C1-diffeomorphisms of four-dimensional symplectic manifolds are hyperbolic, partially hyperbolic or have a completely elliptic periodic point, Ergodic Theory Dynam. Systems 22 (6) (2002) 1621-1639. | MR | Zbl

[3] J. Bochi, M. Viana, Lyapunov exponents: How frequently are dynamical systems hyperbolic?, Preprint IMPA, 2003. | MR

[4] Bonatti C., Díaz L.J., Nonhyperbolic transitive diffeomorphisms, Ann. of Math. 143 (1996) 357-396. | MR | Zbl

[5] Bonatti C., Díaz L.J., Pujals E., A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. 157 (2) (2003) 355-418. | MR | Zbl

[6] Bonatti C., Viana M., SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000) 157-193. | MR | Zbl

[7] Burns K., Pugh C., Shub M., Wilkinson A., Recent results about stable ergodicity, Proc. Sympos. Amer. Math. Soc. 69 (2001) 327-366. | MR | Zbl

[8] Dacorogna B., Moser J., On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1) (1990) 1-26. | Numdam | MR | Zbl

[9] Díaz L.J., Pujals E., Ures R., Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999) 1-43. | MR | Zbl

[10] Mañé R., Contributions to the stability conjecture, Topology 17 (1978) 383-396. | MR | Zbl

[11] Mañé R., An ergodic closing lemma, Ann. of Math. 116 (1982) 503-540. | MR | Zbl

[12] Mañé R., Oseledec's theorem from the generic viewpoint, in: Proceedings of the International Congress of Mathematicians, vols. 1, 2, Warsaw, 1983, PWN, Warsaw, 1984, pp. 1269-1276. | MR | Zbl

[13] Newhouse S., Quasi-elliptic periodic points in conservative dynamical systems, Amer. J. Math. 99 (5) (1976) 1061-1087. | MR | Zbl

[14] Shub M., Topologically transitive diffeomorphisms on T4, in: Lecture Notes in Math., vol. 206, Springer-Verlag, 1971, pp. 39.

[15] Tahzibi A., Stably ergodic systems which are not partially hyperbolic, Israel J. Math. 24 (204) (2004) 315-342. | MR | Zbl

[16] Vivier T., Flots robustament transitif sur des variété compactes, C. R. Math. Acad. Sci. Paris 337 (12) (2003) 791-796. | MR | Zbl

[17] Xia Z., Homoclinic points in symplectic and volume-preserving diffeomorphisms, Comm. Math. Phys. 177 (2) (1996) 435-449. | MR | Zbl

[18] Zehnder E., A note on smoothing symplectic and volume preserving diffeomorphisms, in: Lecture Notes in Math., vol. 597, Springer-Verlag, 1977, pp. 828-854. | MR | Zbl

  • Bessa, Mário; Del Magno, Gianluigi; Lopes Dias, João; Gaivão, José Pedro; Torres, Maria Joana Billiards in generic convex bodies have positive topological entropy, Advances in Mathematics, Volume 442 (2024), p. 109592 | DOI:10.1016/j.aim.2024.109592
  • Wu, Xinxing; Zhang, Xu; Sun, Fu Volume-Preserving Diffeomorphisms with the M0-Shadowing Properties, Mediterranean Journal of Mathematics, Volume 18 (2021) no. 2 | DOI:10.1007/s00009-020-01691-4
  • CATALAN, THIAGO A link between topological entropy and Lyapunov exponents, Ergodic Theory and Dynamical Systems, Volume 39 (2019) no. 3, p. 620 | DOI:10.1017/etds.2017.39
  • Lee, Manseob Symplectic diffeomorphisms with limit shadowing, Asian-European Journal of Mathematics, Volume 10 (2017) no. 02, p. 1750068 | DOI:10.1142/s1793557117500681
  • Catalan, Thiago; Horita, Vanderlei C1-Genericity of symplectic diffeomorphisms and lower bounds for topological entropy, Dynamical Systems, Volume 32 (2017) no. 4, p. 461 | DOI:10.1080/14689367.2017.1278744
  • Buzzi, Jérôme; Crovisier, Sylvain; Fisher, Todd Local perturbations of conservativeC1diffeomorphisms, Nonlinearity, Volume 30 (2017) no. 9, p. 3613 | DOI:10.1088/1361-6544/aa803f
  • Lee, Manseob; Park, Junmi Measure expansive symplectic diffeomorphisms and Hamiltonian systems, International Journal of Mathematics, Volume 27 (2016) no. 09, p. 1650077 | DOI:10.1142/s0129167x16500774
  • Lee, Manseob Continuum-wise expansive symplectic diffeomorphisms, Chaos, Solitons Fractals, Volume 70 (2015), p. 95 | DOI:10.1016/j.chaos.2014.11.007
  • Visscher, Daniel A Franks' lemma for convex planar billiards, Dynamical Systems, Volume 30 (2015) no. 3, p. 333 | DOI:10.1080/14689367.2015.1046815
  • Bessa, Mario; Vaz, Sandra STABLE WEAK SHADOWABLE SYMPLECTOMORPHISMS ARE PARTIALLY HYPERBOLIC, Communications of the Korean Mathematical Society, Volume 29 (2014) no. 2, p. 285 | DOI:10.4134/ckms.2014.29.2.285
  • Najafi Alishah, Hassan; Lopes Dias, João Realization of tangent perturbations in discrete and continuous time conservative systems, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 12, p. 5359 | DOI:10.3934/dcds.2014.34.5359
  • Visscher, Daniel A new proof of Franks' lemma for geodesic flows, Discrete and Continuous Dynamical Systems, Volume 34 (2014) no. 11, p. 4875 | DOI:10.3934/dcds.2014.34.4875
  • Bessa, Mario C1-STABLY SHADOWABLE CONSERVATIVE DIFFEOMORPHISMS ARE ANOSOV, Bulletin of the Korean Mathematical Society, Volume 50 (2013) no. 5, p. 1495 | DOI:10.4134/bkms.2013.50.5.1495
  • ARBIETO, ALEXANDER; CATALAN, THIAGO Hyperbolicity in the volume-preserving scenario, Ergodic Theory and Dynamical Systems, Volume 33 (2013) no. 6, p. 1644 | DOI:10.1017/etds.2012.111
  • Lee, Manseob Symplectic diffeomorphisms with inverse shadowing, Journal of Inequalities and Applications, Volume 2013 (2013) no. 1 | DOI:10.1186/1029-242x-2013-174
  • Bibliography, Lozi Mappings (2013), p. 263 | DOI:10.1201/b15363-7
  • Bessa, Mário; Rocha, Jorge; Torres, Maria Joana Shades of hyperbolicity for Hamiltonians, Nonlinearity, Volume 26 (2013) no. 10, p. 2851 | DOI:10.1088/0951-7715/26/10/2851
  • Bessa, Mário; Rocha, Jorge A remark on the topological stability of symplectomorphisms, Applied Mathematics Letters, Volume 25 (2012) no. 2, p. 163 | DOI:10.1016/j.aml.2011.08.007
  • Lee, Keonhee; Lee, Manseob SYMPLECTIC DIFFEOMORPHISMS WITH ORBITAL SHADOWING, Journal of the Chungcheong Mathematical Society, Volume 25 (2012) no. 4, p. 739 | DOI:10.14403/jcms.2012.25.4.739
  • Bessa, Mário; Dias, João Lopes Generic Hamiltonian Dynamical Systems: An Overview, Dynamics, Games and Science I, Volume 1 (2011), p. 123 | DOI:10.1007/978-3-642-11456-4_8
  • Abdenur, Flavio; Bonatti, Christian; Crovisier, Sylvain Nonuniform hyperbolicity for C 1-generic diffeomorphisms, Israel Journal of Mathematics, Volume 183 (2011) no. 1, p. 1 | DOI:10.1007/s11856-011-0041-5
  • Bochi, Jairo C1-generic symplectic diffeomorphisms: partial hyperbolicity and zero centre Lyapunov exponents, Journal of the Institute of Mathematics of Jussieu, Volume 9 (2010) no. 1, p. 49 | DOI:10.1017/s1474748009000061
  • Bessa, Mário; Duarte, Pedro Abundance of elliptic dynamics on conservative three-flows, Dynamical Systems, Volume 23 (2008) no. 4, p. 409 | DOI:10.1080/14689360802162872
  • Bessa, Mário; Rocha, Jorge On C1-robust transitivity of volume-preserving flows, Journal of Differential Equations, Volume 245 (2008) no. 11, p. 3127 | DOI:10.1016/j.jde.2008.02.045
  • Araujo, Vitor; Bessa, Mário Dominated splitting and zero volume for incompressible three flows, Nonlinearity, Volume 21 (2008) no. 7, p. 1637 | DOI:10.1088/0951-7715/21/7/014

Cité par 25 documents. Sources : Crossref