@article{AIHPC_2006__23_4_439_0, author = {Berti, Massimiliano and Biasco, Luca}, title = {Forced vibrations of wave equations with non-monotone nonlinearities}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {439--474}, publisher = {Elsevier}, volume = {23}, number = {4}, year = {2006}, doi = {10.1016/j.anihpc.2005.05.004}, mrnumber = {2245752}, zbl = {1103.35076}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2005.05.004/} }
TY - JOUR AU - Berti, Massimiliano AU - Biasco, Luca TI - Forced vibrations of wave equations with non-monotone nonlinearities JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 439 EP - 474 VL - 23 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2005.05.004/ DO - 10.1016/j.anihpc.2005.05.004 LA - en ID - AIHPC_2006__23_4_439_0 ER -
%0 Journal Article %A Berti, Massimiliano %A Biasco, Luca %T Forced vibrations of wave equations with non-monotone nonlinearities %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 439-474 %V 23 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2005.05.004/ %R 10.1016/j.anihpc.2005.05.004 %G en %F AIHPC_2006__23_4_439_0
Berti, Massimiliano; Biasco, Luca. Forced vibrations of wave equations with non-monotone nonlinearities. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 4, pp. 439-474. doi : 10.1016/j.anihpc.2005.05.004. https://www.numdam.org/articles/10.1016/j.anihpc.2005.05.004/
[1] A. Ambrosetti, A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on
[2] Families of periodic solutions of resonant PDEs, J. Nonlinear Sci. 11 (1) (2001) 69-87. | MR | Zbl
, ,[3] Periodic solutions of a wave equation with concave and convex nonlinearities, J. Differential Equations 153 (1) (1999) 121-141. | MR | Zbl
, , ,[4] Periodic solutions of nonlinear wave equations with non-monotone forcing terms, Rend. Mat. Acc. Naz. Lincei, s. 9 16 (2) (2005) 109-116. | MR | Zbl
, ,[5] Periodic solutions of nonlinear wave equations with general nonlinearities, Comm. Math. Phys. 243 (2) (2003) 315-328. | MR | Zbl
, ,[6] Multiplicity of periodic solutions of nonlinear wave equations, Nonlinear Anal. 56 (2004) 1011-1046. | MR | Zbl
, ,[7] M. Berti, P. Bolle, Cantor families of periodic solution for completely resonant wave equations, Preprint SISSA, 2004. | MR
[8] Periodic solutions of nonlinear wave equations, in: Harmonic Analysis and Partial Differential Equations, Chicago Lectures in Math., Univ. Chicago Press, 1999, pp. 69-97. | MR | Zbl
,[9] Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (5) (1980) 667-684. | MR | Zbl
, , ,[10] Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math. 31 (1) (1978) 1-30. | MR | Zbl
, ,[11] Periodic solutions of a nonlinear wave equation without assumption of monotonicity, Math. Ann. 262 (2) (1983) 273-285. | EuDML | MR | Zbl
,[12] Soluzioni periodiche di equazioni a derivate parziali di tipo iperbolico non lineari, Rend. Sem. Mat. Univ. Padova 40 (1968) 380-401. | EuDML | Numdam | MR | Zbl
, ,[13] Periodic solutions for completely resonant nonlinear wave equations, Comm. Math. Phys. 256 (2005) 437-490. | MR | Zbl
, , ,
[14] On the existence of periodic solutions for the equations
[15] On the range of a wave operator with non-monotone nonlinearity, Math. Nachr. 106 (1982) 327-340. | MR | Zbl
,[16] Periodic solutions of a weakly nonlinear wave equation in one dimension, Czechoslovak Math. J. 19 (94) (1969) 324-342. | EuDML | MR | Zbl
,[17] Periodic solutions of a weakly nonlinear wave equation with an irrational relation of period to interval length, Differentsial'nye Uravneniya 24 (9) (1988) 1599-1607, 1654 (in Russian); Translation in, Differential Equations 24 (9) (1988) 1059-1065, (1989). | MR | Zbl
, ,[18] Periodic solutions of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math. 20 (1967) 145-205. | MR | Zbl
,[19] Time periodic solutions of nonlinear wave equations, Manuscripta Math. 5 (1971) 165-194. | EuDML | MR | Zbl
,
[20] Soluzioni periodiche dell’equazione non lineare
[21] Density of the range of potential operators, Proc. Amer. Math. Soc. 83 (2) (1981) 341-344. | MR | Zbl
,- Quantitative reducibility of
quasi-periodic cocycles, Ergodic Theory and Dynamical Systems (2024), p. 1 | DOI:10.1017/etds.2024.88 - Infinitely many periodic solutions for the quasi-linear Euler–Bernoulli beam equation with fixed ends, Calculus of Variations and Partial Differential Equations, Volume 62 (2023) no. 2 | DOI:10.1007/s00526-022-02404-3
- Time Periodic Solutions of Nonlinear Waveequation with Dirichletboundary Conditions, Pure Mathematics, Volume 13 (2023) no. 04, p. 1142 | DOI:10.12677/pm.2023.134119
- The Absolutely Continuous Spectrum of Finitely Differentiable Quasi-Periodic Schrödinger Operators, Annales Henri Poincaré, Volume 23 (2022) no. 12, p. 4195 | DOI:10.1007/s00023-022-01192-y
- Cantor spectrum for CMV matrices with almost periodic Verblunsky coefficients, Journal of Functional Analysis, Volume 283 (2022) no. 12, p. 109709 | DOI:10.1016/j.jfa.2022.109709
- Periodic solutions of two-dimensional wave equations with x-dependent coefficients and Sturm–Liouville boundary conditions, Nonlinearity, Volume 35 (2022) no. 10, p. 5033 | DOI:10.1088/1361-6544/ac8217
- Quantitative reducibility of Gevrey quasi-periodic cocycles and its applications, Nonlinearity, Volume 35 (2022) no. 12, p. 6124 | DOI:10.1088/1361-6544/ac98ed
- A semilinear wave equation with non-monotone nonlinearity and forcing flat on characteristics, Electronic Journal of Differential Equations (2021) no. Special Issue 01, p. 91 | DOI:10.58997/ejde.sp.01.c1
- Problem on Periodic Vibrations of an I-beam with Clamped Endpoint in the Resonance Case, Differential Equations, Volume 56 (2020) no. 3, p. 330 | DOI:10.1134/s0012266120030064
- Oscillation Problem for an I-Beam with Fixed and Hinged End Supports, Herald of the Bauman Moscow State Technical University. Series Natural Sciences (2019) no. 84, p. 4 | DOI:10.18698/1812-3368-2019-3-4-21
- Sharp Hölder continuity of the Lyapunov exponent of finitely differentiable quasi-periodic cocycles, Mathematische Zeitschrift, Volume 291 (2019) no. 3-4, p. 931 | DOI:10.1007/s00209-018-2147-5
- Wave equation in higher dimensions - periodic solutions, Electronic Journal of Qualitative Theory of Differential Equations (2018) no. 103, p. 1 | DOI:10.14232/ejqtde.2018.1.103
- Periodic solutions for one dimensional wave equation with bounded nonlinearity, Journal of Differential Equations, Volume 264 (2018) no. 9, p. 5527 | DOI:10.1016/j.jde.2018.02.001
- Almost-periodic solutions of an almost-periodically forced wave equation, Journal of Mathematical Analysis and Applications, Volume 451 (2017) no. 2, p. 629 | DOI:10.1016/j.jmaa.2017.02.036
- Periodic Navier Solutions for the Plate Equation with Non-Monotone Nonlinearities: the Multidimensional Case, Proceedings of the Edinburgh Mathematical Society, Volume 60 (2017) no. 1, p. 203 | DOI:10.1017/s0013091516000092
- Periodic solutions for forced vibrations of wave equation with general nonlinearities: the multidimensional case, Applicable Analysis, Volume 94 (2015) no. 2, p. 399 | DOI:10.1080/00036811.2014.898270
- Existence of
-solutions for a semilinear wave equation with non-monotone nonlinearity, Discrete Continuous Dynamical Systems - S, Volume 7 (2014) no. 6, p. 1193 | DOI:10.3934/dcdss.2014.7.1193 - Embedding of Analytic Quasi-Periodic Cocycles into Analytic Quasi-Periodic Linear Systems and its Applications, Communications in Mathematical Physics, Volume 323 (2013) no. 3, p. 975 | DOI:10.1007/s00220-013-1800-4
- Quasi-periodic solutions of a non-autonomous wave equations with quasi-periodic forcing, Journal of Differential Equations, Volume 252 (2012) no. 10, p. 5274 | DOI:10.1016/j.jde.2012.01.034
- Time Periodic Solutions to the One-Dimensional Nonlinear Wave Equation, Archive for Rational Mechanics and Analysis, Volume 199 (2011) no. 2, p. 435 | DOI:10.1007/s00205-010-0328-4
- Existence of Solutions for a Wave Equation with Non-monotone Nonlinearity and a Small Parameter, Milan Journal of Mathematics, Volume 79 (2011) no. 1, p. 207 | DOI:10.1007/s00032-011-0154-7
- Periodic solutions on the Sturm–Liouville boundary value problem for two-dimensional wave equation, Journal of Mathematical Physics, Volume 50 (2009) no. 11 | DOI:10.1063/1.3255567
- Time-periodic solutions to a nonlinear wave equation with periodic or anti-periodic boundary conditions, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 465 (2009) no. 2103, p. 895 | DOI:10.1098/rspa.2008.0272
- Forced Vibrations of a Nonhomogeneous String, SIAM Journal on Mathematical Analysis, Volume 40 (2008) no. 1, p. 382 | DOI:10.1137/060665038
Cité par 24 documents. Sources : Crossref