@article{AIHPC_2005__22_6_753_0, author = {Schweizer, Ben}, title = {On the three-dimensional {Euler} equations with a free boundary subject to surface tension}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {753--781}, publisher = {Elsevier}, volume = {22}, number = {6}, year = {2005}, doi = {10.1016/j.anihpc.2004.11.001}, mrnumber = {2172858}, zbl = {02245285}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2004.11.001/} }
TY - JOUR AU - Schweizer, Ben TI - On the three-dimensional Euler equations with a free boundary subject to surface tension JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 753 EP - 781 VL - 22 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2004.11.001/ DO - 10.1016/j.anihpc.2004.11.001 LA - en ID - AIHPC_2005__22_6_753_0 ER -
%0 Journal Article %A Schweizer, Ben %T On the three-dimensional Euler equations with a free boundary subject to surface tension %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 753-781 %V 22 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2004.11.001/ %R 10.1016/j.anihpc.2004.11.001 %G en %F AIHPC_2005__22_6_753_0
Schweizer, Ben. On the three-dimensional Euler equations with a free boundary subject to surface tension. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 6, pp. 753-781. doi : 10.1016/j.anihpc.2004.11.001. https://www.numdam.org/articles/10.1016/j.anihpc.2004.11.001/
[1] Large time regularity of viscous surface waves, Arch. Rat. Mech. Anal. 84 (1984) 307-352. | MR | Zbl
,[2] On the Cauchy problem for a capillary drop. I. Irrotational motion, Math. Methods Appl. Sci. 21 (12) (1998) 1149-1183. | MR | Zbl
, ,[3] A bubble in ideal fluid with gravity, J. Differential Equations 81 (1989) 136-166. | MR | Zbl
, ,[4] On the motion of the free surface of a liquid, Comm. Pure Appl. Math. 53 (12) (2000) 1536-1602. | MR | Zbl
, ,[5] The equations of motion of a perfect fluid with free boundary are not well posed, Comm. Partial Differential Equations 12 (1987) 1175-1201. | MR | Zbl
,[6] Partial Differential Equations, Grad. Stud. Math., vol. 19, Amer. Math. Soc., 1998. | MR | Zbl
,[7] On the two-phase free boundary problem for two-dimensional water waves, Math. Ann. 309 (2) (1997) 199-223. | MR | Zbl
, , ,[8] On a free boundary problem for an incompressible ideal fluid in two space dimensions, Adv. Math. Sci. Appl. 9 (1) (1999) 415-472. | MR | Zbl
, , ,[9] Well-posedness of the Euler and Navier-Stokes equations in Lebesgue spaces, Rev. Mat. Iberoamericana 2 (1986) 73-88. | MR | Zbl
, ,[10] Non-Homogeneous Boundary Value Problems and Applications, I, Grundlehren Math. Wiss., vol. 181, Springer-Verlag, 1972. | Zbl
, ,[11] Free boundary problem for an incompressible ideal fluid with surface tension, Math. Models Methods Appl. Sci. 12 (12) (2002) 1725-1740. | MR | Zbl
, ,[12] The Euler equation on a bounded domain as a quasilinear evolution equation, Commun. Appl. Nonlinear Anal. 3 (3) (1996) 107-113. | MR | Zbl
,[13] An existence theorem for a free surface flow problem with open boundaries, Comm. Partial Differential Equations 17 (1992) 1387-1405. | MR | Zbl
,[14] A two-component flow with a viscous and an inviscid fluid, Comm. Partial Differential Equations 25 (2000) 887-901. | MR | Zbl
,[15] Theory of Function Spaces, Monographs Math., vol. 78, Birkhäuser, 1983. | MR | Zbl
,[16] Theory of Function Spaces II, Monographs Math., vol. 84, Birkhäuser, 1992. | MR | Zbl
,[17] On the Bernoulli free boundary problem with surface tension, in: (Ed.), Free boundary problems: theory and applications, CRC Res. Notes Math., vol. 409, Chapman & Hall, 1999, pp. 246-251. | MR | Zbl
,[18] Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math. 130 (1) (1997) 39-72. | MR | Zbl
,[19] Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc. 12 (2) (1999) 445-495. | MR | Zbl
,- A priori estimates for the free boundary problem of rotating Euler–Boussinesq equations with surface tension, Nonlinear Analysis: Real World Applications, Volume 84 (2025), p. 104306 | DOI:10.1016/j.nonrwa.2024.104306
- Hamiltonian Birkhoff Normal Form for Gravity-Capillary Water Waves with Constant Vorticity: Almost Global Existence, Annals of PDE, Volume 10 (2024) no. 2 | DOI:10.1007/s40818-024-00182-z
- Small Scale Creation for 2D Free Boundary Euler Equations with Surface Tension, Annals of PDE, Volume 10 (2024) no. 2 | DOI:10.1007/s40818-024-00179-8
- Local Well-Posedness of the Capillary-Gravity Water Waves with Acute Contact Angles, Archive for Rational Mechanics and Analysis, Volume 248 (2024) no. 5 | DOI:10.1007/s00205-024-02019-2
- The Water-Wave Equations in Eulerian Coordinates, Free Boundary Problems in Fluid Dynamics, Volume 54 (2024), p. 1 | DOI:10.1007/978-3-031-60452-2_1
- Local well-posedness of the free-boundary incompressible magnetohydrodynamics with surface tension, Journal de Mathématiques Pures et Appliquées, Volume 182 (2024), p. 31 | DOI:10.1016/j.matpur.2023.12.009
- Construction of the free-boundary 3D incompressible Euler flow under limited regularity, Journal of Differential Equations, Volume 394 (2024), p. 209 | DOI:10.1016/j.jde.2024.02.027
- A Priori Estimates for the Motion of Charged Liquid Drop: A Dynamic Approach via Free Boundary Euler Equations, Journal of Mathematical Fluid Mechanics, Volume 26 (2024) no. 3 | DOI:10.1007/s00021-024-00883-2
- Angled Crested Like Water Waves with Surface Tension II: Zero Surface Tension Limit, Memoirs of the American Mathematical Society, Volume 293 (2024) no. 1458 | DOI:10.1090/memo/1458
- A Beale–Kato–Majda criterion for free boundary incompressible ideal magnetohydrodynamics, Journal of Mathematical Physics, Volume 64 (2023) no. 9 | DOI:10.1063/5.0167954
- Local-in-time existence of a free-surface 3D Euler flow with H 2+δ initial vorticity in a neighborhood of the free boundary, Nonlinearity, Volume 36 (2023) no. 1, p. 636 | DOI:10.1088/1361-6544/aca5e3
- Hamiltonian Paradifferential Birkhoff Normal Form for Water Waves, Regular and Chaotic Dynamics, Volume 28 (2023) no. 4-5, p. 543 | DOI:10.1134/s1560354723040032
- Blowup for regular solutions and
solutions of the two-phase model in with a free boundary, AIMS Mathematics, Volume 7 (2022) no. 8, p. 15313 | DOI:10.3934/math.2022839 - Solvability of a three-dimensional free surface flow problem over an obstacle, Applicable Analysis, Volume 101 (2022) no. 2, p. 554 | DOI:10.1080/00036811.2020.1754401
- Local Well-Posedness and Incompressible Limit of the Free-Boundary Problem in Compressible Elastodynamics, Archive for Rational Mechanics and Analysis, Volume 244 (2022) no. 3, p. 599 | DOI:10.1007/s00205-022-01774-4
- Long‐Term Regularity of 3D Gravity Water Waves, Communications on Pure and Applied Mathematics, Volume 75 (2022) no. 5, p. 1074 | DOI:10.1002/cpa.21985
- Angled Crested Like Water Waves with Surface Tension: Wellposedness of the Problem, Communications in Mathematical Physics, Volume 383 (2021) no. 3, p. 1409 | DOI:10.1007/s00220-020-03934-7
- Water‐Waves Problem with Surface Tension in a Corner Domain II: The Local Well‐Posedness, Communications on Pure and Applied Mathematics, Volume 74 (2021) no. 2, p. 225 | DOI:10.1002/cpa.21916
- Well-posedness of Electrohydrodynamic Interfacial Waves under Tangential Electric Field, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 2, p. 2567 | DOI:10.1137/19m1285986
- A priori Estimates for the Incompressible Free-Boundary Magnetohydrodynamics Equations with Surface Tension, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 2, p. 2595 | DOI:10.1137/19m1283938
- A Morawetz Inequality for Gravity-Capillary Water Waves at Low Bond Number, Water Waves, Volume 3 (2021) no. 3, p. 429 | DOI:10.1007/s42286-020-00044-8
- On the Incompressible Limit for the Compressible Free-Boundary Euler Equations with Surface Tension in the Case of a Liquid, Archive for Rational Mechanics and Analysis, Volume 237 (2020) no. 2, p. 829 | DOI:10.1007/s00205-020-01516-4
- A regularity result for the incompressible magnetohydrodynamics equations with free surface boundary, Nonlinearity, Volume 33 (2020) no. 4, p. 1499 | DOI:10.1088/1361-6544/ab60d9
- Water Waves Problem with Surface Tension in a Corner Domain I: A Priori Estimates with Constrained Contact Angle, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 5, p. 4861 | DOI:10.1137/19m1239957
- Global well-posedness of the free-surface incompressible Euler equations with damping, Journal of Differential Equations, Volume 267 (2019) no. 2, p. 1066 | DOI:10.1016/j.jde.2019.02.002
- A priori estimates for the free-boundary Euler equations with surface tension in three dimensions, Nonlinearity, Volume 32 (2019) no. 9, p. 3369 | DOI:10.1088/1361-6544/ab0b0d
- A Lagrangian Interior Regularity Result for the Incompressible Free Boundary Euler Equation with Surface Tension, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 5, p. 3982 | DOI:10.1137/18m1216808
- Introduction, Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle, Volume 24 (2018), p. 1 | DOI:10.1007/978-3-319-99486-4_1
- Reduction to a Constant Coefficients Operator and Proof of the Main Theorem, Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle, Volume 24 (2018), p. 113 | DOI:10.1007/978-3-319-99486-4_5
- A sharp regularity result for the Euler equation with a free interface, Asymptotic Analysis, Volume 106 (2018) no. 2, p. 121 | DOI:10.3233/asy-171459
- On the local existence for the Euler equations with free boundary for compressible and incompressible fluids, Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, p. 306 | DOI:10.1016/j.crma.2018.02.002
- On the Mathematical Description of Time-Dependent Surface Water Waves, Jahresbericht der Deutschen Mathematiker-Vereinigung, Volume 120 (2018) no. 2, p. 117 | DOI:10.1365/s13291-017-0173-6
- Uniform regularity for free-boundary Navier–Stokes equations with surface tension, Journal of Hyperbolic Differential Equations, Volume 15 (2018) no. 01, p. 37 | DOI:10.1142/s0219891618500030
- Zero surface tension limit of the free-surface incompressible Euler equations with damping, Nonlinear Analysis, Volume 169 (2018), p. 218 | DOI:10.1016/j.na.2017.12.012
- Recent advances on the global regularity for irrotational water waves, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 376 (2018) no. 2111, p. 20170089 | DOI:10.1098/rsta.2017.0089
- On the Local Existence and Uniqueness for the 3D Euler Equation with a Free Interface, Applied Mathematics Optimization, Volume 76 (2017) no. 3, p. 535 | DOI:10.1007/s00245-016-9360-6
- Uniform Regularity and Vanishing Viscosity Limit for the Free Surface Navier–Stokes Equations, Archive for Rational Mechanics and Analysis, Volume 223 (2017) no. 1, p. 301 | DOI:10.1007/s00205-016-1036-5
- Uniform Estimate of Viscous Free-Boundary Magnetohydrodynamics with Zero Vacuum Magnetic Field, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 4, p. 2710 | DOI:10.1137/16m1089794
- On the Existence for the Free Interface 2D Euler Equation with a Localized Vorticity Condition, Applied Mathematics Optimization, Volume 73 (2016) no. 3, p. 523 | DOI:10.1007/s00245-016-9346-4
- On the local existence of the free-surface Euler equation with surface tension, Asymptotic Analysis, Volume 100 (2016) no. 1-2, p. 63 | DOI:10.3233/asy-161386
- Local well-posedness of the three dimensional compressible Euler–Poisson equations with physical vacuum, Journal de Mathématiques Pures et Appliquées, Volume 105 (2016) no. 5, p. 662 | DOI:10.1016/j.matpur.2015.11.010
- The free boundary Euler equations with large surface tension, Journal of Differential Equations, Volume 261 (2016) no. 2, p. 821 | DOI:10.1016/j.jde.2016.03.029
- Vortex Sheet Formulations and Initial Value Problems: Analysis and Computing, Lectures on the Theory of Water Waves (2016), p. 140 | DOI:10.1017/cbo9781316411155.009
- Multi-solitons and Related Solutions for the Water-waves System, SIAM Journal on Mathematical Analysis, Volume 47 (2015) no. 1, p. 897 | DOI:10.1137/140960220
- A Regularity Result for the Incompressible Euler Equation with a Free Interface, Applied Mathematics Optimization, Volume 69 (2014) no. 3, p. 337 | DOI:10.1007/s00245-013-9221-5
- On the Limit of Large Surface Tension for a Fluid Motion with Free Boundary, Communications in Partial Differential Equations, Volume 39 (2014) no. 4, p. 740 | DOI:10.1080/03605302.2013.865058
- On a linear problem arising in dynamic boundaries, Evolution Equations Control Theory, Volume 3 (2014) no. 4, p. 627 | DOI:10.3934/eect.2014.3.627
- Well-posedness of the plasma–vacuum interface problem, Nonlinearity, Volume 27 (2014) no. 1, p. 105 | DOI:10.1088/0951-7715/27/1/105
- On the 2D free boundary Euler equation, Evolution Equations Control Theory, Volume 1 (2012) no. 2, p. 297 | DOI:10.3934/eect.2012.1.297
- Well-posedness of 1-D compressible Euler–Poisson equations with physical vacuum, Journal of Differential Equations, Volume 252 (2012) no. 3, p. 2160 | DOI:10.1016/j.jde.2011.10.019
- Low regularity Cauchy theory for the water-waves problem: canals and swimming pools, Journées équations aux dérivées partielles (2012), p. 1 | DOI:10.5802/jedp.75
- Well-posedness for the compressible Navier–Stokes–Lamé system with a free interface, Nonlinearity, Volume 25 (2012) no. 11, p. 3111 | DOI:10.1088/0951-7715/25/11/3111
- Local Well-Posedness for Fluid Interface Problems, Archive for Rational Mechanics and Analysis, Volume 199 (2011) no. 2, p. 653 | DOI:10.1007/s00205-010-0335-5
- On the water-wave equations with surface tension, Duke Mathematical Journal, Volume 158 (2011) no. 3 | DOI:10.1215/00127094-1345653
- On the Limit as the Density Ratio Tends to Zero for Two Perfect Incompressible Fluids Separated by a Surface of Discontinuity, Communications in Partial Differential Equations, Volume 35 (2010) no. 5, p. 817 | DOI:10.1080/03605300903503115
- Geometry and a priori estimates for free boundary problems of the Euler's equation, Communications on Pure and Applied Mathematics, Volume 61 (2008) no. 5, p. 698 | DOI:10.1002/cpa.20213
- Well-posedness of the free-surface incompressible Euler equations with or without surface tension, Journal of the American Mathematical Society, Volume 20 (2007) no. 3, p. 829 | DOI:10.1090/s0894-0347-07-00556-5
- Fluid Flows and Free Boundaries, Reactive Flows, Diffusion and Transport (2007), p. 5 | DOI:10.1007/978-3-540-28396-6_1
Cité par 58 documents. Sources : Crossref